		MATRICE DI REVISIONE
REV	DATA	DESCRIZIONE MODIFICA
	-	-
	-	-
	-	-
	-	-
	-	-
	•	
N.B.: LA	TAVOLA SOSTITU	ISCE QUELLA RELATIVA AL CODICE E DEL PROGETTO ESECUTIVO

COLLEGAMENTO AUTOSTRADALE
DALMINE - COMO - VARESE - VALICO DEL GAGGIOLO E OPERE AD ESSO CONNESSE
CODICE C.U.P. E81B09000510004

TRATTE B1, B2, C, D, TRVA13+14, GREENWAY

PROGETTO ESECUTIVO DI DETTAGLIO

TRATTA B1

MONITORAGGIO AMBIENTALE FASE POST D'OPERA COMPONENTE ACQUE SUPERFICIALI RELAZIONE ANNUALE 2017

IDENTIFICAZIONE ELABORATO CODICE PROGETTO: F00107B WBS ULA TIPO DIOBERA C 1 ANX GE001 0 MN RH 065 C Scala: DATA DESCRIZIONE REV

Scala: -		
DATA	DESCRIZIONE	REV
Aprile 2018	Emissione	C
CONCED	ENTE	
-	CONCESSIONI AUTOSTRADALI LOMBARDE	

RAGGRUPPAMENTO TEMPORANEO IMPRESE:

Mandataria STRABAG A G Mandante
GLF
Grandi Lavori
Fincosit
S.p.A.

Mandante ICM S.p.A. Mandante cooptata
STRABAG
S.p.A.

Mandante

STRABAG

Mandante

Arch.

Salvatore Vermiglio

PROGETTISTA - PROGETTO ESECUTIVO DI DETTAGLIO

RAGGRUPPAMENTO TEMPORANEO PROGETTISTI:

Mandataria Mandante

3TI 3TI PROGETTI ITALIA INGEGNERIA INTEGRATA S.p.a.

GP ingegneria srl GESTIONE PROGETTI DI INGEGNERIA

RESPONSABILE DI PROGETTO ED INCARICATO DELL'INTEGRAZIONE FRA LE VARIE PRESTAZIONI:

Ing. Alberto Cecchini

ELABORAZIONE PROGETTUALE

PROGETTISTA:

3TI PROGETTI ITALIA S.p.A

3TI ITALIA S.p.A.
DIRETTORE TECNICO
Ing. Stefano Luca Possati
Ordine degli Ingegneri
Provincia di Roma n. 20809

Redatto: Meani Verificato: Colacillo Approvato: Possati

Relazione Specialistica

INDICE

1. DESCRIZIONE DELLE ATTIVITÀ	2
2. DESCRIZIONE DELLE AREE DI MONITORAGGIO	3
2.1 CARATTERIZZAZIONE DEL CORSO D'ACQUA INTERFERITO DAL TRACCIATO	3
3. PUNTI DI MONITORAGGIO	4
4. INQUADRAMENTO METODOLOGICO	5
4.1 DEFINIZIONE DEI PARAMETRI	5
4.2 INDIVIDUAZIONE DEI LIMITI DI LEGGE E DEFINIZIONE DELLE ANOMALIE	Ç
4.3 STRUMENTAZIONE	13
5. RISULTATI OTTENUTI	15
6. CONCLUSIONI	22
7. ALLEGATI	23
ALLEGATO 1 – SCHEDE DI RESTITUZIONE	23
ALLEGATO 2 – CERTIFICATI DI LABORATORIO	24

Relazione Specialistica

1. DESCRIZIONE DELLE ATTIVITÀ

Il presente documento illustra le attività di monitoraggio della **componente "Ambiente Idrico Superficiale"** svolte nella fase di **Post Operam**.

Le attività rientrano nell'ambito del Progetto di Monitoraggio Ambientale, predisposto in sede di Progetto Esecutivo del "Collegamento Autostradale Dalmine – Como – Varese – Valico del Gaggiolo ed opere ad esso connesse".

In particolare il presente documento illustra i dati relativi alla tratta B1 e viabilità connessa.

Tutte le attività strumentali di rilevamento dei dati in campo e di elaborazione dei dati relativi alle attività svolte sono state effettuate secondo quanto previsto dalla *Relazione Specialistica - componente Acque superficiali del PMA* (Codice Documento V_XA0XGE0010_MNRH004B01 – dicembre 2015) e dalla successiva *Integrazione al PMA Tratta B1 per recepimento Istruttoria ARPA* (Codice Documento C_XA0XGE0010_MNRH010C – gennaio 2016) e più in generale nel rispetto della normativa nazionale ed in accordo con le pertinenti norme tecniche nazionali, regionali ed internazionali.

Il presente documenti riporta le attività di monitoraggio ambientale di Corso d'Opera 2015 della componente idrico superficiale, prendendo a riferimento la documentazione del Progetto Esecutivo: le attività di monitoraggio sono state svolte nei mesi di ottobre in corrispondenza del fiume Lura, nel comune di Lomazzo (CO).

Relazione Specialistica

2. DESCRIZIONE DELLE AREE DI MONITORAGGIO

Nell'ambito del monitoraggio della componente Ambiente idrico superficiale, o più comunemente denominata "Acque superficiale", sono state individuate le aree più soggette a potenziali fenomeni di inquinamento, ovvero i corsi d'acqua attraversati dal tracciato che:

- appartengono alla rete idrica maggiore;
- garantiscono la presenza di acqua per almeno 240 giorni.

2.1 Caratterizzazione del corso d'acqua interferito dal tracciato

Si descrivono le caratteristiche del corso d'acqua oggetto di monitoraggio, così come individuati sulla base della Relazione Idrologica (febbraio 2009), e interferito dal tracciato e se ne riassumono le condizioni registrate in fase di ante operam.

Torrente Lura

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIV-LU-01, ubicato idrologicamente a valle, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

Relazione Specialistica

3. PUNTI DI MONITORAGGIO

Nella tabella seguente sono riportati i punti sui quali è stato eseguito il monitoraggio ambientale per la fase di post operam nell'anno 2016/2017.

Codifica Punto	Corso d'acqua	Comune	Provincia	Data esecuzione attività	Parametri rilevati	Monitoraggio AO
FIM-LU-01	Lura	Lomazzo	Como	14/12/2016	parametri in situ, di laboratorio, IBE	Sì
FIV-LU-01	Lura	Lomazzo	Como	14/12/2016	parametri in situ, di laboratorio, IBE	Sì
FIM-LU-01	Lura	Lomazzo	Como	09/03/2017	parametri in situ, di laboratorio, IBE	Sì
FIV-LU-01	Lura	Lomazzo	Como	09/03/2017	parametri in situ, di laboratorio, IBE	Sì
FIM-LU-01	Lura	Lomazzo	Como	23/05/2017	parametri in situ, di laboratorio, IBE, EPI-D	Sì
FIV-LU-01	Lura	Lomazzo	Como	23/05/2017	parametri in situ, di laboratorio, IBE, EPI-D	Sì
FIM-LU-01	Lura	Lomazzo	Como	27/09/2017	parametri in situ, di laboratorio, IBE, EPI-D	Sì
FIV-LU-01	Lura	Lomazzo	Como	27/09/2017	parametri in situ, di laboratorio, IBE, EPI-D	Sì

Tab. 3/A: Punti di monitoraggio coinvolti nel monitoraggio ambientale post operam anno 2016/2017.

Di seguito vengono riportate le variazioni rispetto al crono programma dei monitoraggi. Come si osserva non è stato necessario effettuare variazioni rispetto alle date programmate.

Codifica Punto	odifica Punto Tipo programmazione		Data esecuzione effettiva	Note
FIM-LU-01	PROGRAMMATA	14/12/2016	14/12/2016	
FIV-LU-01	PROGRAMMATA	14/12/2016	14/12/2016	-
FIM-LU-01	PROGRAMMATA	09/03/2017	09/03/2017	
FIV-LU-01	PROGRAMMATA	09/03/2017	09/03/2017	-
FIM-LU-01	PROGRAMMATA	23/05/2017	23/05/2017	
FIV-LU-01	PROGRAMMATA	23/05/2017	23/05/2017	-
FIM-LU-01	PROGRAMMATA	21/09/2017	27/09/2017	La data di esecuzione è stata spostata e programmata al 27.09.2017 a causa delle
FIV-LU-01	PROGRAMMATA	21/09/2017	27/09/2017	intense precipitazioni avvenute nelle precedenti settimane.

Tab. 3/B: Riepilogo delle variazioni dei rilievi rispetto alla programmazione prevista.

Relazione Specialistica

4. INQUADRAMENTO METODOLOGICO

4.1 Definizione dei parametri

Le attività di prelievo e analisi sono state svolte secondo le metodiche descritte nella *Relazione Specialistica* - *componente Acque superficiali del PMA* (Codice Documento V_XA0XGE0010_MNRH004B01 – dicembre 2015) e dalla successiva *Integrazione al PMA Tratta B1 per recepimento Istruttoria ARPA* (Codice Documento C_XA0XGE0010_MNRH010C – gennaio 2016).

Il monitoraggio della componente Ambiente Idrico Superficiale viene eseguito sia tramite misurazioni di parametri in situ sia attraverso il prelievo di campioni di acqua per le misure di laboratorio.

In corrispondenza di ciascuna interferenza vengono monitorati contestualmente due punti di monitoraggio posizionati idrologicamente a monte e a valle dell'interferenza.

Nell'ambito delle attività di monitoraggio di Corso d'opera vengono eseguite:

- misure in situ;
- analisi chimiche di laboratorio;
- analisi dei parametri biologici (IBE ed EPI-D).

Di seguito vengono forniti i dettagli.

Parametri in situ

Nell'ambito delle attività di Corso d'opera vengono eseguite le misure in situ dei seguenti parametri.

Parametro	Unità di misura	Tipologia parametri
Portata	m³/s	PARAMETRI FISICI
Temperatura	°C	
Ossigeno disciolto	% saturazione	
Potenziale RedOx	mV	PARAMETRI CHIMICO
рН	-	FISICI
Conducibilità elettrica	μS/cm	
Torbidità	NTU	

Tab. 4.1/A: Elenco dei parametri in situ

MISURA DI PORTATA: La portata viene misurata con il metodo del mulinello idrometrico o con il correntometro. Per quanto riguarda il mulinello idrometrico, in corrispondenza del punto di monitoraggio si determina la sezione batimetrica tramite rotella metrica e asta graduata. Lungo tale sezione si individuano una serie di verticali (una verticale ogni 50 cm - 1 m in funzione della lunghezza complessiva della sezione e delle irregolarità lungo la stessa), su ciascuna delle quali vengono prese 3 misure di velocità: una sul fondo dell'alveo, una a metà e una poco sotto il pelo libero. Laddove il battente idraulico risulti di modesta entità

Relazione Specialistica

(nell'ordine dei 10-20 cm) vengono effettuate 1 o 2 misure per ciascuna verticale. Viene quindi calcolata la velocità media e da questa la portata. Il correntometro acustico digitale utilizza un sensore con due trasduttori ultrasonici che misurano i tempi di ritorno dei segnali trasmessi e riflessi dalle particelle dell'acqua in movimento, sulla base dei quali vengono calcolate le velocità istantanee della corrente ad intervalli di tempo prefissati. Le modalità analitiche di calcolo con i due strumenti rimangono invece pressoché identiche.

PARAMETRI CHIMICO – FISICI: I parametri chimico-fisici vengono misurati con una sonda multiparametrica. La sonda viene posta direttamente in acqua. Il punto di campionamento deve essere localizzato in una zona del corso d'acqua che non presenta né ristagni né particolari turbolenze. Il tempo di immersione è in funzione della stabilizzazione dei parametri rilevati dallo strumento. La sonda viene tarata normalmente il giorno precedente al rilievo.

Parametri di laboratorio

I parametri per cui sono previste analisi di laboratorio sono riportati nella tabella sottostante con le metodiche previste da PMA.

Parametro	Unità di misura	Metodo	Tipologia parametri	
Solidi Sospesi Totali	SST mg/l	APAT CNR IRSA 2090 B Man 29 2003		
Cloruri	Cl- mg/l	UNI EN ISO 10304-1:2009		
Solfati	SO ₄ mg/l	UNI EN ISO 10304-1:2009		
Idrocarburi totali	μg/l	EPA 5021 A 2003 EPA 8015 C 2007 EPA 3510 C 1996 EPA 3620 C 2007	PARAMETRI CHIMICO-FISICI	
Azoto ammoniacale	NH₄⁺mg/l	APAT CNR IRSA 4030 A1 Man 29 2003		
Tensioattivi anionici	mg/l	APAT CNR IRSA 5170 Man 29 2003		
Tensioattivi non ionici	mg/l	UNI 10511-2:1996		
COD	mg/l O ₂	APAT CNR IRSA 5130 Man29 2003		
Alluminio	μg/l	EPA 200.8 1994		
Ferro	μg/l	UNI EN ISO 11885:2000	METALLI	
Cromo μg/l I		EPA 200.8 1994	7	
Escherichia coli	UFC/100 ml	APAT CNR IRSA 7030 D Man 29 2003	PARAMETRI MICRO-BIOLOGICI	

Tab. 4.1/B – Elenco dei parametri di laboratorio (Metodiche previste da PMA)

A seguito delle prescrizioni dell'ente di accreditamento e del normale aggiornamento normativo sono stati modificati alcuni metodi di analisi. Le metodiche aggiornate sono riportate nella tabella seguente.

Relazione Specialistica

Parametro	Unità di misura	Metodo	Tipologia parametri	
Solidi Sospesi Totali	Solidi Sospesi Totali SST mg/l APAT CNR 29 2003			
Cloruri	Cl ⁻ mg/l	UNI EN ISO 10304-1:2009		
Solfati	SO ₄₋ mg/l	UNI EN ISO 10304-1:2009		
Idrocarburi totali	μg/l	EPA 5021 A 2003 EPA 8015 C 2007 EPA 3510 C 1996 EPA 3620 C 2007	PARAMETRI CHIMICO-FISICI	
Azoto ammoniacale	NH ₄ mg/l	APAT CNR IRSA 4030 A1 Man 29 2003		
Tensioattivi anionici	mg/l	APAT CNR IRSA 5170 Man 29 2003		
Tensioattivi non ionici	mg/l	UNI 10511-1:1996+A1:2000		
COD	mg/l O ₂ ISO 15705:2002			
Alluminio	μg/l UNI EN ISO 11885:2009			
Ferro	μg/l	UNI EN ISO 11885:2009	METALLI	
Cromo	μg/l	UNI EN ISO 11885:2009		
Escherichia coli	UFC/100 ml	APAT CNR IRSA 7030 D Man 29 2003	PARAMETRI BATTERIOLOGICI	

Tab. 4.1/C – Elenco dei parametri di laboratorio (Metodiche aggiornate)

I campioni di acqua da sottoporre ad analisi di laboratorio vengono prelevati immergendo il contenitore direttamente in acqua.

Il campione deve essere prelevato in maniera tale che mantenga inalterate le proprie caratteristiche fisiche, chimiche e biologiche fino al momento dell'analisi e conservato in modo tale da evitare modificazioni dei suoi componenti e delle caratteristiche da valutare. Le analisi dei parametri vengono eseguite garantendo il rispetto degli Holding Time in conformità a ciò che viene indicato dal metodo analitico di prova specifico e dalle indicazioni generali del metodi di campionamento (APAT CNR IRSA 1030 2003).

La quantità da prelevare dal campione per le analisi dipende dalla tecnica analitica e dai limiti di sensibilità richiesti.

Il punto di campionamento deve essere localizzato in una zona del corso d'acqua che non presenta né ristagni né particolari turbolenze.

Il prelievo dei campioni per l'esame microbiologico viene effettuato con recipienti puliti e sterili.

Per i prelievi da effettuare per immersione della bottiglia vengono utilizzate bottiglie sterili incartate prima della sterilizzazione e al momento dell'immersione la bottiglia viene afferrata con una pinza per permettere l'apertura del tappo a comando.

Relazione Specialistica

Le bottiglie utilizzate per prelevare campioni per analisi microbiologiche non vengono sciacquate all'atto del prelievo, così come previsto da normativa.

All'atto del prelievo, la bottiglia sterile deve essere aperta avendo cura di non toccare la parte interna del tappo che va poi a contatto con il campione prelevato, né l'interno del collo della bottiglia. Subito dopo il prelievo si provvede all'immediata chiusura della stessa.

Nell'eseguire i prelievi è necessario non riempire completamente la bottiglia al fine di consentire una efficace agitazione del campione al momento dell'analisi in laboratorio.

Parametri biologici che richiedono esami sia in situ che in laboratorio

Di seguito si riportano i parametri per i quali sono previste sia misurazioni in situ sia analisi di laboratorio. Le metodiche utilizzate per il monitoraggio sono quelle definite dal documento 'Metodi analitici per le acque APAT e IRSA-CNR'.

Parametro Unità di misura		Metodo	Tipologia parametri
EPI-D	classi	APAT-CNR-IRSA 9010 MAN 29 2003	PARAMETRI BIOLOGICI
IBE	classi	APAT-CNR-IRSA 9010 MAN 29 2003	PARAMETRI BIOLOGICI

Tab. 4.1/D: Elenco dei parametri in situ e di laboratorio (Metodiche da PMA)

IBE

Il calcolo dell'Indice Biotico Esteso (IBE), viene valutato mediante l'analisi qualitativa delle specie indicatrici di macroinvertebrati presenti nel corso d'acqua.

E' un metodo finalizzato alla definizione della qualità biologica di un corso d'acqua mediante valori numerici convenzionali e si basa sulla diversa sensibilità di alcuni gruppi faunistici agli inquinanti e sulla ricchezza in specie della comunità macrobentonica complessiva. Una corretta applicazione dell'IBE prevede la conoscenza preliminare dei corsi d'acqua da analizzare e la scelta di punti con caratteristiche idrologiche idonee alla colonizzazione da parte dei macroinvertebrati utilizzati per la classificazione qualitativa delle acque (presenza di acqua corrente e di substrato naturale o naturalizzato), dopo di che si può procedere al campionamento vero e proprio, da effettuare lungo un transetto ideale tra sponda e sponda. Tale transetto viene percorso ove possibile in obliquo, contro corrente e con l'accortezza di campionare i diversi microhabitat presenti.

Dal momento che forti temporali e piene possono indurre rimaneggiamenti bentonici, occorre attendere due o tre settimane dall'evento, in funzione dell'evento stesso, prima di procedere al campionamento per consentire la ricolonizzazione completa dei substrati litici. Il campione, raccolto con un retino, viene sottoposto ad una prima setacciatura per eliminare i sedimenti in eccesso e successivamente miscelato con dell'acqua pulita, in modo da tenere gli organismi in vita e consentirne il movimento (riferimento spesso molto utile per la determinazione). Man mano che i taxa vengono separati, si procede ad una prima classificazione e registrazione sulla apposita scheda.

Relazione Specialistica

Per la definizione dei valori di IBE la soluzione migliore è quella di procedere ad una immediata separazione degli organismi dal detrito da effettuarsi sul posto in modo da poter aver subito a disposizione una lista dei gruppi principali presenti.

Gli esemplari separati vengono trasferiti con l'uso delle pinzette in appositi contenitori, debitamente etichettati, riempiti per metà di alcool al 70% che funziona da conservante. Particolari organismi, che fissati in alcool risulterebbero di difficile identificazione, sono stati trasportati in vivo per le successive classificazioni in laboratorio. Una volta giunti in laboratorio si è proceduto alla classificazione sistematica definitiva.

EPI-D

La valutazione dell' EPI-D (Eutrophication Pollution Index – Diatom based) è basato sulla sensibilità delle specie alla concentrazione di nutrienti e di sostanza organica ed al grado di mineralizzazione del corpo idrico, con particolare riferimento ai cloruri.

Una volta individuato il punto di campionamento, si definisce un transetto lungo il quale eseguire il campionamento su sassi e ciottoli aventi le seguenti caratteristiche: completa immersione, irradiazione solare diretta, soggetti alla corrente del corso d'acqua.

Nel monitoraggio fluviale si utilizzano prevalentemente le Diatomee epilitiche, che vengono agevolmente prelevate dal substrato con un semplice spazzolino. Per l'applicazione di questo indice è necessaria l'identificazione a livello di specie, effettuabile solo dopo l'eliminazione della sostanza organica mediante incenerimento ed osservazione al microscopio ottico a mille ingrandimenti dei preparati dopo applicazione di una speciale resina ad alto indice di rifrazione.

Gli individui vengono contati procedendo per strisciate orizzontali avendo cura di non sovrapporre i campi. Occorre prendere in considerazione frustuli interi, rotti purché riconoscibili e singole valve. Una volta realizzata la lista delle specie, si procede alla stima della loro abbondanza. Una volta eseguito il conteggio, si procede al calcolo dell'indice EPI-D come previsto da letteratura (Zelinka e Marvan, 1961):

I valori dell'indice EPI-D vanno da 1 a 20: i valori prossimi al 20 indicano acque pulite, mentre quelli più ridotti stanno a significare acque sempre più compromesse ed il risultato viene interpretato in cinque classi di qualità ed un corrispondente colore per i riporti cartografici.

4.2 Individuazione dei limiti di legge e definizione delle anomalie

Al fine di valutare eventuali alterazioni nei corpi idrici superficiali è stato previsto, per tale componente, di procedere utilizzando il criterio di confronto monte-valle.

Per l'analisi di laboratorio e le modalità di prelievo si fa riferimento al documento "Metodi analitici per le acque" – APAT e IRSA-CNR.

Il metodo utilizzato per l'analisi dei dati prevede:

- verifica dei dati;
- normalizzazione del giudizio di qualità ambientale attraverso le curve VIP (Valore Indicizzato del Parametro) si vedano le curve per la normalizzazione del dato di seguito riportate;

Relazione Specialistica

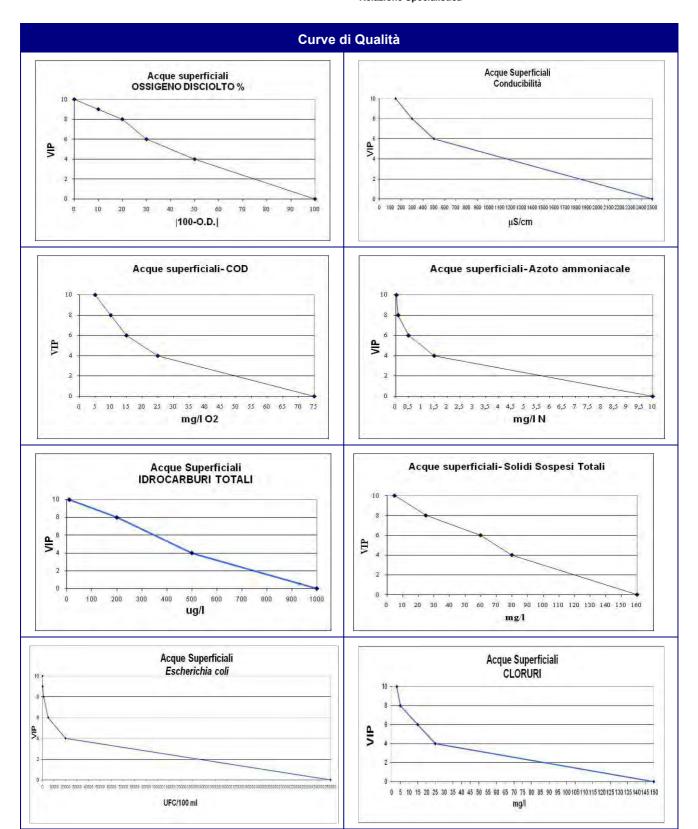
valutazione di soglie di attenzione e intervento.

Per ciascun parametro monitorato, ad eccezione di Portata, Temperatura, Torbidità e Potenziale Redox per i quali non è prevista l'applicazione del metodo VIP, si è proceduto, per la valutazione degli impatti, con l'assegnazione di un giudizio di qualità sotto forma di un indice (VIP ovvero Valore Indicizzato del Parametro) compreso tra 0 e 10.

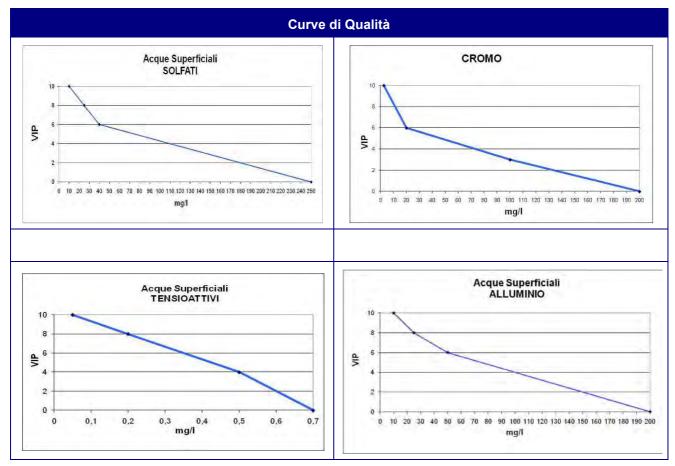
Al valore VIP=0 viene convenzionalmente assegnato il significato di qualità ambientale pessima mentre a VIP =10 corrisponde a un giudizio di qualità ambientale ottimale.

Si tratta di una normalizzazione del dato originale attraverso curve-funzione che permettono la trasformazione del dato ambientale rilevato in un Valore Indicizzato del Parametro, consentendo così un'analisi più agevole di ogni parametro misurato grazie alla disponibilità della stessa scala di riferimento (tra 0 e 10).

Di seguito si riportano, per ciascun parametro monitorato ad eccezione dei parametri detti, le curve che verranno utilizzate; tali curve sono quelle fornite dal Supporto Tecnico e sono state costruite sulla base dei dati derivanti da altre esperienze di monitoraggio delle acque superficiali legate alla costruzione di grandi opere in Lombardia.


Per la descrizione dettagliata della procedura di individuazione delle curve limite si rimanda ai documenti condivisi col ST:

 Metodo di analisi e valutazione dei dati di monitoraggio – Fase Corso d'opera – Componente Ambiente Idrico Superficiale – Settembre 2010


Relazione Specialistica

Relazione Specialistica

Tab. 4.2/A: Definizione delle curve di qualità per le acque superficiali

Allo scopo di individuare eventuali pressioni ed impatti esercitati sulla componente in oggetto, sono stati definiti opportuni "valori soglia".

Si precisa che il superamento di tali soglie non deve essere considerato come prova certa di un impatto ma come una segnalazione della possibilità che si verifichino alterazioni ambientali e quindi della necessità di approfondimenti delle indagini, mediante le quali escludere la presenza di un impatto oppure confermare la situazione di possibile inquinamento (soglia di attenzione) o di inquinamento in corso (soglia di intervento).

Il livello di riferimento viene individuato nei valori misurati a monte delle lavorazioni previste. La misura dei parametri di monte e di valle deve avvenire nello stesso giorno, in modo pressoché isocrono.

Si ritiene che il confronto con il valore di monte sia più rappresentativo del confronto con eventuali valori misurati nello stesso sito di valle, ad esempio in Ante Operam; tale scelta consente inoltre di ovviare a problemi di confrontabilità dei dati legati alla stagionalità, così come previsto dal PMA.

I valori VIP di monte e di valle, distribuiti su una scala tra 0 (qualità ambientale pessima) e 10 (qualità ambientale ottimale), vengono quindi utilizzati per calcolare la differenza VIP_{Monte} - VIP_{Valle}. In condizioni normali tale differenza dovrebbe essere nulla, ovvero oscillare di poco intorno allo 0, vista la relativa poca

Relazione Specialistica

distanza tra la stazione di monte e quella di valle. Valori elevati della differenza indicano invece la presenza di una situazione di degrado.

Le soglie di attenzione e intervento sono così definite:

- soglia di attenzione: valore della differenza (VIP_{Monte} VIP_{Valle}) compreso tra 1 e 2;
- soglia di intervento: valore della differenza (VIP_{Monte} VIP_{Valle}) maggiore di 2.

Nell'eventualità in cui la differenza $VIP_{Monte} - VIP_{Valle}$ risulti negativa, per valori fino a -1 si può ritenere che ciò possa essere dovuto alla normale variabilità analitica; per valori inferiori a -1 (anomalia di rilievo) si deve ritenere che ci siano valori indicizzati del parametro inferiori nel punto di monte rispetto al punto di valle.

Il superamento dei livelli di ciascuna delle due soglie determina l'apertura di un'anomalia, dando origine ad una serie di azioni successive e in funzione del grado di rischio di impatto che viene assegnato alle soglie stesse.

Le azioni correttive conseguenti il superamento delle soglie sono dettagliate nel documento *Metodo di analisi* e valutazione dei dati di monitoraggio – Fase Corso d'opera – Componente Ambiente Idrico Superficiale – Settembre 2010 già precedentemente citato.

Per la definizione della soglia di intervento relativa agli indici IBE e EPI-D non viene prevista la normalizzazione del dato ma vengono direttamente utilizzati i valori delle classi corrispondenti. Il salto di una classe di qualità del corso d'acqua definita tramite gli indici IBE e EPI-D tra Monte e Valle indica il superamento della soglia di attenzione e il salto di due classi indica il superamento della soglia di intervento.

Per il parametro pH non viene utilizzata la curva di qualità per ricavare il VIP, il valore di $|VIP_{Monte} - VIP_{Valle}|$ viene definito come la differenza, in valore assoluto, tra i valori di pH di Monte e di Valle; si considera superata la soglia di intervento qualora si abbia una variazione tra monte e valle di una unità di pH ($|\Delta pH| > 1$).

La segnalazione e la gestione delle anomalie avverrà attraverso il Sistema Informativo Territoriale (SIT).

Per ciò che concerne la fase di Post Operam, come richiesto dal ST, si è proceduto comunque al calcolo del VIP e al confronto monte/valle, così da avere un confronto indicizzato tra i parametri.

Trattandosi di opera in esercizio, non possono essere applicate le procedure previste dal documento "Metodo di analisi e valutazione dei dati di monitoraggio – Fase Corso d'opera – Componente Ambiente Idrico Superficiale – Settembre 2010", valido per la gestione anomalie nella fase di Corso d'Opera.

4.3 Strumentazione

Si descrivono di seguito le caratteristiche minime della strumentazione utilizzata nelle attività di campo, ovvero nella misura dei parametri in situ e nel prelievo dei campioni inviati al laboratorio.

E' stata cura dei tecnici che hanno provveduto al campionamento verificare che la strumentazione rispettasse quanto di seguito riportato e che, prima di ogni campagna, fosse pulita e perfettamente in ordine.

Mulinello idrometrico

Autostrada Pedemontana Lombarda

Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse Tratta B1 e viabilità connessa MONITORAGGIO AMBIENTALE POST OPERAM COMPONENTE AMBIENTE IDRICO SUPERFICIALE

Relazione Specialistica

Per la misura di portata viene utilizzato un mulinello idrometrico. Esso è uno strumento di precisione utilizzato per misurare la velocità dell'acqua ed ottenere in base ad essa il calcolo della portata. Il principio di funzionamento è il seguente: il corpo del mulinello contiene un generatore di impulsi che, per ogni rivoluzione dell'albero dovuta al movimento dall'elica, genera un segnale impulsivo che viene trasmesso attraverso un cavo ad un contatore d'impulsi totalizzati durante un intervallo di tempo prefissato.

Sonda multiparametrica

Per la verifica dei parametri in situ viene utilizzata una sonda multiparametrica che consente, tramite elettrodi intercambiabili, di misurare direttamente sul terreno più parametri.

Si riportano di seguito i requisiti minimi dei sensori necessari:

- sensore di temperatura di range almeno 0 a 35 °C;
- sensore di pH da almeno 2 a 12 unità pH;
- sensore di conducibilità da almeno 0 a 1000 mS/cm;
- sensore di Ossigeno disciolto da almeno 0 a 20 mg/l e da almeno 0 a 200% di saturazione;
- sensore di potenziale RedOx almeno da -999 a 999 mV;
- sensore di torbidità
- alimentazione a batteria;

Prima di procedere alle misurazioni è necessario verificare sempre la taratura dello strumento.

Per quanto riguarda i campioni da sottoporre alle analisi di laboratorio si riporta di seguito l'elenco dei recipienti da utilizzare:

- contenitore in vetro da 2 I per le analisi dei parametri chimico fisici e metalli;
- vial per le analisi degli idrocarburi;
- contenitore sterile in vetro da 1000 ml per le analisi dei parametri batteriologici;
- contenitore in polietilene da minimo 500 ml per le analisi di IBE;
- contenitore in vetro scuro da 1 l per le analisi di diatomee bentoniche.

I contenitori utilizzati devono essere contrassegnati da apposite etichette di tipo autoadesivo che riportino tutte le informazioni relative al punto di prelievo.

Relazione Specialistica

5. RISULTATI OTTENUTI

Nei sotto paragrafi successivi vengono descritti i metodi di analisi e valutazione dei dati e i risultati ottenuti dai rilievi effettuati nell'ambito del monitoraggio post operam per la componente in esame.

Gli esiti di queste campagne vengono messi a confronto con i risultati delle indagini di Ante Operam, al fine di valutare eventuali variazioni occorse alla componente "Ambiente idrico superficiale" al termine del completo smantellamento delle attività di cantiere potenzialmente impattanti e ripristino dei siti, rispetto a quanto registrato prima dell'avvio delle attività di cantiere.

I risultati sono stati organizzati in tabelle in funzione della tipologia di parametri. Sono state inoltre inserite le relative tabelle VIP al fine di avere un confronto indicizzato immediato monte/valle.

Si fa osservare che, nelle tabelle dei risultati, il simbolo "<" (minore di) indica che il valore rilevato è inferiore al limite di rilevabilità (es Idrocarburi totali $<9 \mu g/l$ significa che la concentrazione rilevata di Idrocarburi totali nel campione è inferiore al limite di rilevabilità pari a $9 \mu g/l$).

Al fine di rendere più agevole e più chiara la valutazione dei risultati ottenuti nel post operam 2016/2017 il commento ai risultati verrà per coppia di punti.

Codifica	Data	Portata	Temp. Acqua	OD	Redox (mV)	рН	Conducibilità	Torbidità
Punto	prelievo	(m3/s)	(°C) (% di saturazione) (mV) -		-	(μS/cm)	(NTU)	
FIM-LU-01	12/03/2014	1,13	11,2	83,4	112,4	8,00	754	6,84
FIV-LU-01	12/03/2014	1,04	10,2	82,8	130,9	7,95	759	6,63
FIM-LU-01	08/05/2014	0,867	16,8	89,1	117,2	8,14	694	5,15
FIV-LU-01	08/05/2014	0,691	16,0	83,1	139,7	8,01	704	7,73
FIM-LU-01	14/12/2016	0,25	6,9	98,3	239,7	8,26	1.052	4,90
FIV-LU-01	14/12/2016	0,22	6,9	99,3	252,2	8,30	1.057	4,70
FIM-LU-01	09/03/2017	0,11	10	102	191,2	8,50	1.245	6,00
FIV-LU-01	09/03/2017	0,11	9,6	115	187,0	8,50	1.264	6,50
FIM-LU-01	23/05/2017	0,31	22,1	124	171,0	8,30	730	360,00
FIV-LU-01	23/05/2017	0,31	22,0	105	167,0	8,40	720	220,00
FIM-LU-01	27/09/2017	0,01	16,7	197,6	200,8	8,11	1.649	5,70
FIV-LU-01	27/09/2017	0,03	16,7	146,9	193,1	8,40	1.654	4,50

^{*}Valore normalizzato a una temperatura pari a 20°C.

Tab. 5/A: Parametri In situ. In azzurro i risultati delle indagini Ante Operam.

Relazione Specialistica

Codifica Punto	Data rilievo	Oss	pssigeno p		н	Conducibilità (μS/cm)	
	Data Inicvo	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP
FIM-LU-01	12/03/2014	8,34	0.06	8,00	0.05	4,99	0.01
FIV-LU-01	12/03/2014	8,28	0,06	7,95	0,05	4,98	0,01
FIM-LU-01	08/05/2014	8,91	0.60	8,14	0.42	5,19	0.04
FIV-LU-01	08/05/2014	8,31	0,60	8,01	0,13	5,16	0,04
FIM-LU-01	14/12/2016	9,83	0.40	8,26	0.04	4,34	0.00
FIV-LU-01	14/12/2016	9,93	-0,10	8,30	0,04	4,33	0,02
FIM-LU-01	09/03/2017	9,80	1 20	8,50	0.00	3,77	0.06
FIV-LU-01	09/03/2017	8,50	1,30	8,50	0,00	3,71	0,06
FIM-LU-01	23/05/2017	7,20	2.20	8,30	0.40	5,31	0.02
FIV-LU-01	23/05/2017	9,50	-2,30	8,40	0,10	5,34	-0,03
FIM-LU-01	27/09/2017	0,19	4.40	8,11	0.20	2,55	0.00
FIV-LU-01	27/09/2017	4,31	-4,12	8,40	0,29	2,54	0,02

^{*}Valore normalizzato a una temperatura pari a 20°C.

Tab. 5/B: Analisi VIP – parametri in situ – In azzurro i risultati delle indagini Ante Operam.

Codifica Punto	Data prelievo	IBE	EPI-D
			-
FIM-LU-01	12/03/2014	IV	II / III
FIV-LU-01	12/03/2014	IV	III
FIM-LU-01	08/05/2014	IV	-
FIV-LU-01	08/05/2014	IV	-
FIM-LU-01	14/12/2016	III	-

Relazione Specialistica

FIV-LU-01	14/12/2016	III	-
FIM-LU-01	09/03/2017	III	-
FIV-LU-01	09/03/2017	III	-
FIM-LU-01	23/05/2017	III / IV	IV
FIV-LU-01	23/05/2017	III	V
FIM-LU-01	27/09/2017	III	IV
FIV-LU-01	27/09/2017	III	IV

Tab. 5/C: Parametri in situ/di laboratorio – campagne post operam 2016/2017 - In azzurro i risultati delle indagini Ante Operam.

Codifica			BE	EP	I-D	
Punto	prelievo	VIP	Δ VIP	VIP	Δ VIP	
FIM-LU-01	12/03/2014	IV	0	II / III	0,5	
FIV-LU-01	12/03/2014	IV	U	III	0,5	
FIM-LU-01	08/05/2014	IV	0	-		
FIV-LU-01	08/05/2014	IV	U	-	-	
FIM-LU-01	14/12/2016	III	0	-		
FIV-LU-01	14/12/2016	III	0	-	-	
FIM-LU-01	09/03/2017	III	0	-		
FIV-LU-01	09/03/2017	III	0	-	-	
FIM-LU-01	23/05/2017	III / IV	0.5	IV	1	
FIV-LU-01	23/05/2017	III	-0,5	V	I	
FIM-LU-01	27/09/2017	III	0	IV	0	
FIV-LU-01	27/09/2017	III	U	IV	0	

Tab. 5/D: Analisi VIP - Parametri in situ/di laboratorio – campagne Post Operam 2016/2017 - In azzurro i risultati delle indagini Ante Operam.

Relazione Specialistica

Codifica	Data	SST	Cloruri	Solfati	ldrocarburi Totali	Azoto Ammoniacale	Azoto Ammoniacale N-NH4+	Tensioattivi anionici	Tensioattivi non ionici	Alluminio	Ferro	Cromo	COD	Escherichia Coli
Punto	prelievo	mg/l	mg/l	mg/l	(µg/l)	(mgNH4/I)	(mg/l N)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(UFC/100 ml)
FIM-LU-01	12/03/2014	13	74	63	140	1,3	0,93	0,05	<0,02	38	<50	2,9	17	9,1
FIV-LU-01	12/03/2014	13	77	67	140	1,5	1,17	0,04	<0,02	38	<50	3,1	16	10
FIM-LU-01	08/05/2014	3,2	120	72	22	<0,05	<0,04	<0,03	<0,02	220	60	1,5	6,2	120
FIV-LU-01	08/05/2014	4,3	120	79	34	<0,05	<0,04	<0,03	<0,02	180	58	2	5,4	200
FIM-LU-01	14/12/2016	<20	137	83	<77	1,21	= 0,94	0,30	<0,25	91	69	5,1	<18	80
FIV-LU-01	14/12/2016	<20	137	84	<77	1,15	=0,89	0,31	<0,25	78	66,2	5,5	<18	120
FIM-LU-01	09/03/2017	<20	201	110	<77	0,10	=0,08	0,30	0,29	137	104,3	4,7	22	<10
FIV-LU-01	09/03/2017	<20	203	110	<77	0,07	=0,05	0,28	0,29	130	105,6	4,7	23	<10
FIM-LU-01	23/05/2017	250	94,3	60	<77	0,12	=0,10	0,20	0,50	1.350	1.340	3,90	23	<10
FIV-LU-01	23/05/2017	180	92,1	59	<77	0,12	=0,09	0,26	0,49	960	910	3,30	22	<10
FIM-LU-01	27/09/2017	<20	214	120	<77	0,21	=0,16	0,36	0,29	82	147	2,26	44	<10
FIV-LU-01	27/09/2017	<20	209	130	<77	0,18	=0,14	0,36	0,31	85	147	3,30	45	380

Tab. 5/E: Dati campagne Post Operam 2016/2017 – parametri di laboratorio - In azzurro i risultati delle indagini Ante Operam.

Come richiesto da ARPA si è proceduto all'analisi anche dei metalli disciolti, come riportato nella tabella seguente.

Codifica	Data prelievo	Alluminio disciolto	Ferro disciolto	Cromo disciolto
Punto		(µg/l)	(µg/l)	(µg/l)
FIM-LU-01	14/12/2016	<2	36,3	<2
FIV-LU-01	14/12/2016	2,4	38,8	<2
FIM-LU-01	09/03/2017	115	97,5	4,8

SUPERFICIALE Relazione Specialistica

FIV-LU-01	09/03/2017	126	105,3	4,8
FIM-LU-01	23/05/2017	64	21,8	<2
FIV-LU-01	23/05/2017	73	18,2	<2
FIM-LU-01	27/09/2017	79	147	2,6
FIV-LU-01	27/09/2017	72	124	2,5

Tab. 5/F: Dati campagne Post Operam 2016/2017 - parametri di laboratorio - metalli disciolti

Codifica Punto	Data rilievo	S	ST	Clo	ruri	Sol	lfati	Idroca To	arburi tali	ammo	oto niacale IH4+)	Tensio anior		Tension i		Allun	ninio	Cro	omo	co	OD		erichi coli		
		VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP	VIP	ΔVIP	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP	VIP	Δ VIP		
FIM-LU-01	12/03/2014	9,20	0.00	2,43	0.10	5,34	0.11	8,63	0.00	5,13	0.47	10,00	0.00	10,00	0.00	6,96	0.00	9,91	0.05	5,60	0.20	9,91	0.01		
FIV-LU-01	12/03/2014	9,20	0,00	2,34	0,10	0,10	0,10	5,23	0,11	8,63	0,00	4,67	4,67	10,00	0,00	10,00	0,00	6,96	0,00	9,86	0,05	5,80	-0,20	0,20 9,90 0,	0,01
FIM-LU-01	08/05/2014	10,00	0.00	0,96	0.00	5,09	0.20	9,87	0.12	9,75	0,00	10,00	0.00	10,00	0.00	-1	1 00	10,00	0.00	9,52	-0.32	8,98	0,09		
FIV-LU-01	08/05/2014	10,00	0,00	0,96	0,00	0,00 4,89	0,20	9,75	0,13 9,75 0,00	10,00	0,00	10,00	0,00	0,80	-1,80	10,00	0,00	9,84	-0,32	8,89	0,09				
FIM-LU-01	14/12/2016	8,50	0.00	0,42	0.00	4,77	0.00	9,29	0.00	5,12	-0.09	6,67	0.40	7,33	0.00	4,36	0.50	9,41	0.00	5,40	0.00	9,20	0.22		
FIV-LU-01	14/12/2016	8,50	0,00	0,42	0,00	4,74	0,03	9,29	0,00	5,21	-0,09	6,53	0,13	7,33	0,00	4,88	-0,52	9,31	0,09	5,40	0,00	8,98	0,22		
FIM-LU-01	09/03/2017	8,50	0.00	0,00	0.00	4,00	0.00	9,29	0.00	8,57	0.70	6,67	0.07	6,80	0.00	2,52	0.00	9,50	0.00	4,60	0.00	9,90	0.00		
FIV-LU-01	09/03/2017	8,50	0,00	0,00	0,00	4,00	0,00	9,29	0,00	9,32	-0,76	6,93	-0,27	6,80	0,00	2,80	-0,28	9,50	0,00	4,40	0,20	9,90	0,00		
FIM-LU-01	23/05/2017	0,00	0.00	1,78	0.07	5,43	0.00	9,29	0.00	8,12	0.40	8,00	0.00	4,00	0.40	0,00	0.00	9,68	0.44	4,40	0.00	9,90	0.00		
FIV-LU-01	23/05/2017	0,00	0,00	1,85	-0,07	5,46	-0,03	9,29	0,00	8,30	-0,18	7,20	0,80	4,13	-0,13	0,00	0,00	9,82	-0,14	4,60	-0,20	9,90	0,00		
FIM-LU-01	27/09/2017	8,50	0.00	0,00	0.00	3,71	0.20	9,29	0.00	7,68	0.14	5,87	0.00	6,80	0.07	4,72	0.40	9,98	0.16	2,48	0.00	9,90	1 24		
FIV-LU-01	27/09/2017	8,50	0,00	0,00	0,00	3,43	0,29	9,29	0,00	7,81	-0,14	5,87	0,00	6,53	0,27	4,60	0,12	9,82	0,16	2,40	0,08	8,69	1,21		

Tab. 5/G: Analisi VIP parametri di laboratorio – campagne Post Operam 2016/2017 - In azzurro i risultati delle indagini Ante Operam.

Il calcolo del VIP per il parametro Azoto Ammoniacale viene effettuato sulla forma N-NH4+.

Relazione Specialistica

Rilievo del 14/12/2016

Non si registrano criticità né anomalie per quanto riguarda i parametri di campo e i valori riscontrati sono in linea tra il punto di monte e quello di valle. Il pH si mantiene su valori debolmente basici (8,26 a monte e 8,30 a valle) e la torbidità delle acque misura 4,90 NTU a monte e 4,70 NTU a valle. L'ossigenazione delle acque è nella norma e del tutto simile tra la stazione di monte e quella di valle rispettivamente 98,3% e 99,3%, la conducibilità elettrica è circa la medesima nel punto di monte e nel punto di valle.

Anche per quanto riguarda i parametri analitici di laboratorio non si segnalano criticità né anomalie.

Le concentrazioni di tutti i contaminanti ricercati risultano allineate tra il punto di monte e quello di valle; ciò è dimostrato dai valori di Δ VIP prossimi allo 0.

Si è proceduto nella campagna anche al rilievo del parametro biologico IBE (Indice Biotico Esteso). Dal punto di vista dell'IBE il corso d'acqua risulta appartenere a una classe III a monte e a valle, corrispondente ad un ambiente inquinato o comunque alterato, in miglioramento rispetto a quanto registrato nelle precedenti campagne di CO e in fase di AO.

Rilievo del 09/03/2017

Non si registrano criticità né anomalie per quanto riguarda i parametri di campo e i valori riscontrati sono in linea tra il punto di monte e quello di valle. Il pH si mantiene su valori debolmente basici (8,50 sia a monte che a valle). La torbidità delle acque misura 6,00 NTU a monte e 6,50 NTU a valle, valore leggermente superiore a quello della precedente campagna. L'ossigenazione delle acque è nella norma, leggermente superiore rispetto ai valori riscontrati il 14/12/2016 (102% a monte, 115% a valle), la conducibilità elettrica è circa la medesima nel punto di monte e nel punto di valle.

Anche per quanto riguarda i parametri analitici di laboratorio non si segnalano criticità né anomalie.

Le concentrazioni di tutti i contaminanti ricercati risultano allineate tra il punto di monte e quello di valle; ciò è dimostrato dai valori di Δ VIP prossimi allo 0.

Si è proceduto nella campagna anche al rilievo del parametro biologico IBE (Indice Biotico Esteso). Dal punto di vista dell'IBE il corso d'acqua risulta appartenere ad una classe III a monte e a valle, corrispondente ad un ambiente inquinato o comunque alterato, in uguale rispetto a quanto registrato nella precedente campagna.

Rilievo del 23/05/2017

Non si registrano criticità né anomalie per quanto riguarda i parametri di campo e i valori riscontrati sono in linea tra il punto di monte e quello di valle. Il pH si mantiene su valori debolmente basici (8,30 a monte e 8,40 a valle). La torbidità delle acque risulta elevata con valori misurati nettamente maggiori rispetto a quanto rilevato nelle precedenti campagne di monitoraggio: 360 NTU a monte e 220 NTU a valle. L'ossigenazione delle acque è nella norma, in linea rispetto ai precedenti monitoraggi (124% a monte, 105% a valle), la conducibilità elettrica è la medesima nel punto di monte e nel punto di valle.

Anche per quanto riguarda i parametri analitici di laboratorio non si segnalano criticità né anomalie.

Relazione Specialistica

Rispetto alle precedenti campagne risultano decisamente elevati i valori di alluminio e ferro mentre il cromo mantiene valori confrontabili con le precedenti campagne.

Le concentrazioni di tutti i contaminanti ricercati risultano, comunque, allineate tra il punto di monte e quello di valle; ciò è dimostrato dai valori di Δ VIP prossimi allo 0.

Si è proceduto nella campagna anche al rilievo del parametro biologico IBE (Indice Biotico Esteso) e EPI-D (Eutrophication Pollution Index – Diatom based). Dal punto di vista dell'IBE il corso d'acqua risulta appartenere ad una classe III/IV a monte e III a valle, corrispondente ad un ambiente inquinato o comunque alterato, in linea rispetto a quanto registrato nelle precedenti campagne. Per quanto concerne l'EPI-D il corso d'acqua mostra per il punto di monte sia per il punto di valle una classe IV e per il punto a valle una classe V. La criticità maggiore è stata riscontrata nella primavera a valle dell'infrastruttura con una V classe di qualità. In questa stagione la differenza di una classe di qualità tra monte e valle potrebbe essere riconducibile più che agli effetti dell'inserimento dell'opera alle piogge che si sono verificate nel periodo antecedente il campionamento che, seppur deboli, hanno comunque determinato una condizione di torbidità nel corso d'acqua, impedendo alla luce, fonte trofica indispensabile per la proliferazione delle diatomee, di penetrare e colpire i substrati litici colonizzabili da questa componente. Ad inizio autunno i valori monte/valle, come si vedrà a proposito del rilievo del 27/09/2017, risulteranno del tutto confrontabili tra loro.

Rilievo del 27/09/2017

Non si registrano criticità né anomalie per quanto riguarda i parametri di campo e i valori riscontrati sono in linea tra il punto di monte e quello di valle. Il pH si mantiene su valori debolmente basici (8,11 a monte e 8,40 a valle) e la torbidità delle acque misura 5,70 NTU a monte e 4,50 NTU a valle. L'ossigenazione delle acque è nella norma, con valori maggiori rispetto ai precedenti monitoraggi (197,6% a monte, 146,9% a valle), la conducibilità elettrica è circa la medesima nel punto di monte e nel punto di valle.

Anche per quanto riguarda i parametri analitici di laboratorio non si segnalano criticità né anomalie. Fa eccezione esclusivamente la concentrazione di Escherichia coli che, a valle, mostra un valore decisamente elevato pari a 380 UFC/100 ml. Tale aspetto è evidenziato dal Δ VIP pari a 1,21.

Si è proceduto nella campagna anche al rilievo del parametro biologico IBE (Indice Biotico Esteso) e EPI-D (Eutrophication Pollution Index – Diatom based). Dal punto di vista dell'IBE il corso d'acqua risulta appartenere ad una classe III a monte e a valle, corrispondente ad un ambiente inquinato o comunque alterato. Per quanto concerne l'EPI-D il corso d'acqua mostra sia per il punto di monte sia per il punto di valle una classe IV, corrispondente a una qualità delle acque cattiva.

Confronto con risultanze di Ante Operam

Dal confronto con i risultati delle campagne di Ante Operam non ci sono variazioni significative da segnalare. I parametri di in situ si mantengono nel complesso in linea con gli storici.

Si segnala in particolare una riduzione della portata a fronte di un incremento dell'ossigenazione delle acque e del potenziale redox e della conducibilità. La portata, ad eccezione di quanto rilevato nella campagna del 23/05/2017 mantiene valori costanti e in linea con quelli dell'ante operam.

Relazione Specialistica

Anche per quanto riguarda i parametri di laboratorio non si registrano criticità rispetto a quanto riscontrato in Ante Operam.

Le analisi con il metodo VIP non rilevano criticità particolari. Si segnala esclusivamente il valore piuttosto elevato registrato nella campagna del 27/09/2017 per Escherichia coli.

Per quanto riguarda i parametri biologici, relativamente all'IBE va osservato che, esaminando i risultati ottenuti in fase ante operam rispetto a quelli conseguiti in fase post operam, si osserva una sostanziale invarianza nella qualità biologica del corso d'acqua sia nel punto monitorato a monte dell'opera, sia in quello a valle.

Per quanto riguarda invece il parametro EPI-D, esaminando il dato raccolto in fase ante operam rispetto a quello osservato in fase post operam, si è evidenziato una decadimento di una classe nella qualità biologica del corso d'acqua sia nel punto monitorato a monte dell'opera, sia in quello a valle.

6. CONCLUSIONI

Il periodo di Post Operam 2016/2017 ha previsto, per la componente "Ambiente Idrico Superficiale" riferita alla Tratta B1, il monitoraggio del solo corsi d'acqua individuati nel PMA corrispondente al torrente Lura. Il monitoraggio si è svolto in 4 campagne a partire dal 14/12/2016 per continuare durante tutto l'anno 2017 che hanno visto il rilievo sia dei parametri in situ che di laboratorio, oltre che dell'Indice Biotico Esteso. In 2 campagne si è proceduto, inoltre, al rilievo dell'Indice Diatomico di Eutrofizzazione (EPI-D), così come previsto da PMA. Dal confronto con l'Ante Operam non si rilevano evidenti criticità.

Per la coppia di punti di monitoraggio non si registrano variazioni sostanziali tra i risultati delle campagne di Post Operam e gli esiti delle campagne di Ante Operam. Si può affermare pertanto che il quadro ambientale di Post Operam, per la componente in esame, non risulta variato rispetto allo stato iniziale precedente alla realizzazione dell'opera ed, in generale, dalle campagne non emergono altresì sostanziali scostamenti tra i valori registrati a monte e a valle.

Per un'analisi dettagliata dei risultati ottenuti si rimanda alle schede di restituzione dati visibili sul SIT e inserite come allegato nella seguente relazione.

Relazione Specialistica

7. ALLEGATI

ALLEGATO 1 - SCHEDE DI RESTITUZIONE

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIM-LU-01
Tipologia indagine	Post operam - Anno 1 - Prima campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità o	connessa	
Comune	Lomazzo	Provincia	Como
Distanza dal Tracciato	28 m	Progressiva di Progetto	km 0+2,23
Corso d'acqua	Torrente Lura		

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS84	4		Coordinate Gauss-Boag	a
Long: 9° 2' 35,42"	Lat: 45° 40' 44,58"	H: 242,4 m	X: 1.503.389	Y: 5.058.409

Caratterizzazione sintetica del sito

Elementi antropico insediativi	Ele nat
Attività agricola	Are am
Attività produttiva	Pa
Residenziale	Ris
Cascina - fabbricato rurale	PL
Aree degradate	Bo
Scuola	Co
Ospedale - casa di cura - casa di riposo	Fal
Nucleo - edificio di interesse storico	Vin
Cimitero	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
PLIS	•
Bosco	
Corso d'acqua	>
Falda	
Vincoli idrogeologici - rispetto pozzi idrici	•

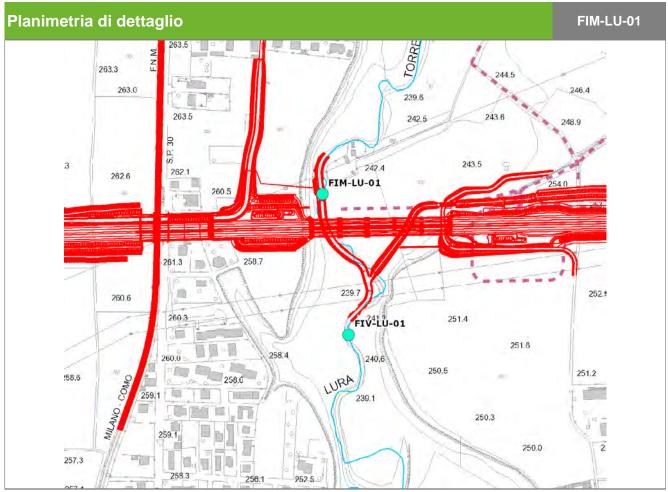
Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	•
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIV-LU-01, ubicato idrologicamente a valle, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

FIM-LU-01

Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01


SCALA 1:10000

Legenda

Output

Outp

SCALA 1:5000

Legenda	Acque superficiali - Staz	ioni puntuali 🔀 Acque su	 Acque superficiali - Stazioni lineari Fiumi 		
	 Tracciato di dettaglio 	Viabilità dei cantieri			

Profilo longitudinale

Rilievi fotografici FIM-LU-01

Foto 1 Foto attività di rilievo: misura di portata

Rilievi fotografici FIM-LU-01

Foto 2 Foto attività di rilievo: misura parametri chimico-fisici

Foto 3 Foto attività di rilievo: misura parametro IBE

Scheda di sintesi				FIM-LU-01
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2016	Post operam	14/12/2016	11:40:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. Le rive risultano molto scoscese e quasi del tutto nude. Solo in alcuni tratti è presente un sottile strato erboso. I fenomeni erosivi risultano frequenti con scavo delle rive. Analogamente alle ultime campagne, l'ubicazione del punto di monitoraggio è fissata circa 50 metri più a monte rispetto alle campagne di AO e CO condotte fino a settembre 2015.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Occorre lasciare il mezzo di trasporto all'altezza dell'intersezione di via per Milano con via dell'Industria. Da qui si prosegue a piede prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a destra; al secondo bivio occorre svoltare a sinistra. Si prosegue fino ad arrivare a un'area privata recintata. Per i campionamenti occorre addentrarsi nel bosco tenendosi l'area recintata sulla destra.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx -
- Macchina fotografica -

Mulinello idrometrico - Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Inquadramento meteorologico settimana precedente al rilievo							
Data rilievo Condizioni meteo settimana precedente							
14/12/2016 Temperatura media di circa 2°C; precipitazioni atmosferiche assenti; presenza di nebbie a bassa quota							

isultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,25	-
Temperatura (T)	°C	6,90	-
Ossigeno disciolto (O2)	% di saturazione	98,30	9,83
Potenziale RedOx	mV	239,70	
рН	unità pH	8,26	8,26
Conducibilità Elettrica	microS/cm	1.052,00	4,34
Torbidità	NTU	4,90	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	137,00	0,42
Solfati (SO4-)	mg/l	83,00	4,77
drocarburi Totali (EPA 5030 C 2003)	microg/I	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	1,21	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,94	5,12
Tensioattivi Anionici	mg/l	0,30	6,67
Tensioattivi Non Ionici	mg/l	< 0,25	7,33
COD	mg/l O2	< 18,00	5,40
Alluminio (Al)	microg/l	91,00	4,36
Ferro (Fe)	microg/l	69,10	
Cromo (Cr)	microg/l	5,10	9,41
Escherichia Coli	UFC/100 ml	80,00	9,20
In situ/di laboratorio	Unità di misura	Misura	VIP
IBE (classe)	-	III	-

1	Note	
-		

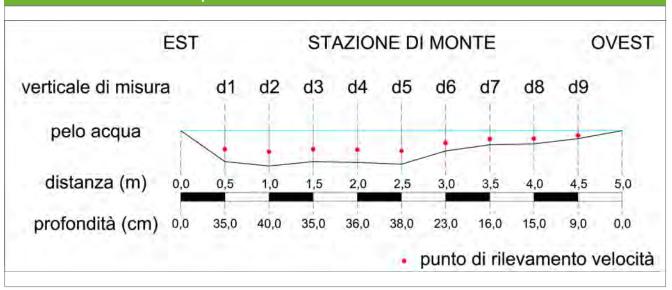
Risultati misure - IBE								
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza				
Ephemeroptera	Baetidae	Baetis	-	L				
Tricoptera	Hydropsichae	-	-	L				
Anellida	Lumbricidae	-	-	1				
Haplotaxida	Tubificidae	-	-	L				
Diptera	Chironomidae	-	-	L				
Diptera	Simuliidae	-	-	L				
Diptera	Anthomydae	-	-	2				
Gasteropoda	Physidae	-	-	1				
Classe di Qualità		III						

Note

Abbondanza del Taxon nel campione:

I = sicuramente presente; L = abbondante; U = dominante

Risultati misure - EPI-D								
Taxa	Genere	Specie / varietà	i*	r*	a*			
Classe di Qualità			Giudizio di Qualità					


Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	11:40:00
Ora fine misura	12:10:00
Data taratura strumentazione	14/12/2016
Area sezione (mq)	1,235
Larghezza sezione (m)	5
Profondità massima (m)	0,38
Profondità minima (m)	0
Numero verticali misurate	9
Velocità massima (m/s)	0,366
Velocità minima (m/s)	0,03

Dettagli misure									
	V1	V2	V3	V4	V5	V6	V7	V8	V9
Velocità media (m/s)	0,152	0,366	0,366	0,244	0,213	0,091	0,03	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9
Direzione velocità (°)	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9
Profondità verticali (m)	0,35	0,4	0,35	0,36	0,38	0,23	0,16	0,15	0,09

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Nebbia a bassa quota

Note

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIV-LU-01
Tipologia indagine	Post operam - Anno 1 - Prima campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità connessa							
Comune	Lomazzo	Provincia	Como					
Distanza dal Tracciato	157 m	Progressiva di Progetto	km 0+2,30					
Corso d'acqua	Torrente Lura							

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (delibe
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (delibe

PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS8	4	
Long: 9° 2' 37,37"	Lat: 45° 40' 37,22"	H: 239,7 m

Coordinate Gauss-Boaga	
X: 1.503.431	Y: 5.058.182

Caratterizzazione sintetica del sito

Elementi antropico insediativi	
Attività agricola	
Attività produttiva	
Residenziale	
Cascina - fabbricato rurale	
Aree degradate	
Scuola	
Ospedale - casa di cura - casa di riposo	
Nucleo - edificio di interesse storico	
Cimitero	

	Elementi di valore naturalistico/ambientale
	Area di pregio paesistico - ambientale
	Parco regionale
	Riserva naturale - SIC - ZPS
~	PLIS
	Bosco
~	Corso d'acqua
	Falda
	Vincoli idrogeologici - rispetto pozzi idrici
	pozzi idrici

Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	•
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIM-LU-01, ubicato idrologicamente a monte, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

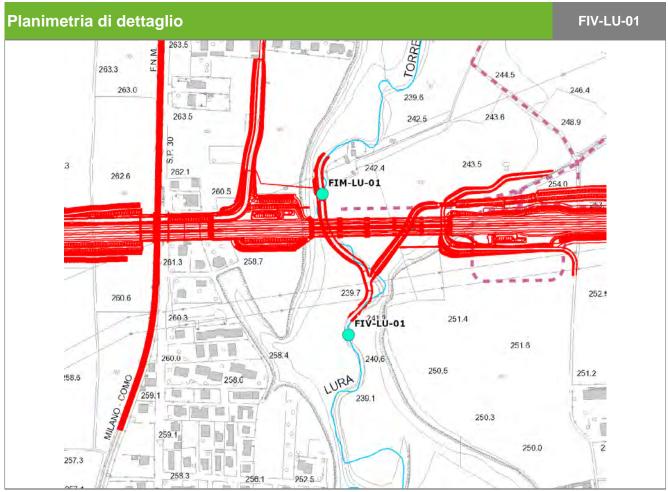

FIV-LU-01

Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01

SCALA 1:10000

SCALA 1:5000

Legenda	 Acque superficiali - Staz 	ioni puntuali 🔀 Acque su	ıperficiali - Stazioni line	eari — Fiumi
	 Tracciato di dettaglio 	Viabilità dei cantieri		

Profilo longitudinale

Foto 1 Foto attività di rilievo: campionamento per misura parametri chimico-fisici

Foto 2 Foto attività di rilievo: misura di portata

Foto 3 Foto attività di rilievo: misura parametro IBE

Scheda di sintesi						
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo		
Acque superficiali	2016	Post operam	14/12/2016	10:45:00		

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. La fascia perifluviale limitrofa al punto di prelievo è caratterizzata da formazioni arboree non riparie di ampiezza superiore ai 30 m. La rive risultano scoscese con la presenza di vegetazione arborea e massi. I fenomeni erosivi risultano frequenti con scavo delle rive.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Proseguire sino a raggiungere l'intersezione di via per Milano con via dell'Industria. Per raggiungere il punto occorre proseguire prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a sinistra in direzione della cascina; costeggiare a piedi il coltivo fino a imboccare un sentiero la cui entrata è in linea con la cascina alle spalle.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx -
- Macchina fotografica -

Mulinello idrometrico - Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Inquadramento meteorologico settimana precedente al rilievo						
Data rilievo	Condizioni meteo settimana precedente					
14/12/2016	Temperatura media di ca. 2°C; precipitazioni atmosferiche assenti; presenza di nebbia a bassa quota					

isultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,22	-
Temperatura (T)	°C	6,90	-
Ossigeno disciolto (O2)	% di saturazione	99,30	9,93
Potenziale RedOx	mV	252,20	
рН	unità pH	8,30	8,30
Conducibilità Elettrica	microS/cm	1.057,00	4,33
Torbidità	NTU	4,70	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	137,00	0,42
Solfati (SO4-)	mg/l	84,00	4,74
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	1,15	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,89	5,21
Tensioattivi Anionici	mg/l	0,31	6,53
Tensioattivi Non Ionici	mg/l	< 0,25	7,33
COD	mg/l O2	< 18,00	5,40
Alluminio (Al)	microg/l	78,00	4,88
Ferro (Fe)	microg/l	66,20	
Cromo (Cr)	microg/l	5,50	9,31
Escherichia Coli	UFC/100 ml	120,00	8,98
In situ/di laboratorio	Unità di misura	Misura	VIP
IBE (classe)	-	III	-

Not	е
-	

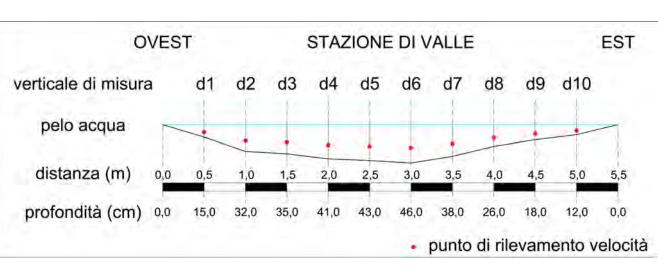
Risultati misure - IBE							
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza			
Ephemeroptera	Baetidae	Baetis	-	L			
Tricoptera	Hydropsichae	-	-	L			
Anellida	Lumbricidae	-	-	2			
Diptera	Chironomidae	-	-	L			
Diptera	Tipulidae	-	-	*			
Diptera	Simuliidae	-	-	L			
Hirudinea	Erpobdellidae	Dina	-	3			
Thrichoptera	Hydroptilidae	-	-	2			
Gasteropoda	Physidae	-	-	3			
Gasteropoda	Hydrobiidae	-	-	1			
Classe	di Qualità	III					

Note

Abbondanza del Taxon nel campione:

I = sicuramente presente; L = abbondante; U = dominante

Risultati misure -					
Taxa	Genere	Specie / varietà	i*	r*	a*
Classe di Qualità			Giudizio di Qualità		


Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	10:45:00
Ora fine misura	11:15:00
Data taratura strumentazione	14/12/2016
Area sezione (mq)	1,53
Larghezza sezione (m)	5,5
Profondità massima (m)	0,46
Profondità minima (m)	0
Numero verticali misurate	10
Velocità massima (m/s)	0,274
Velocità minima (m/s)	0,03

Dettagli misure										
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Velocità media (m/s)	0,03	0,152	0,244	0,274	0,213	0,183	0,061	0,03	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9	Dir10
Direzione velocità (°)	90	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
Profondità verticali (m)	0,15	0,32	0,35	0,41	0,43	0,46	0,38	0,26	0,18	0,12

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Nebbia a bassa quota

Note

FIV-LU-01 / FIM-Confronto risultati Monte - Valle LU-01 Risultati misure In situ Delta VIP Conducibilità Elettrica 0,02 Ossigeno disciolto (O2) -0,10 рΗ 0,04 di laboratorio Delta VIP Alluminio (AI) -0,52 Azoto Ammoniacale (N_NH4+) -0,09 Cloruri (Cl-) 0,00 COD 0,00 0,09 Cromo (Cr) Escherichia Coli 0,22 IBE (classe) 0 Idrocarburi Totali (EPA 5030 C 2003) 0,00 Solfati (SO4-) 0,03 Solidi Sospesi Totali (SST) 0,00 Tensioattivi Anionici 0,13 Tensioattivi Non Ionici 0,00 In situ/di laboratorio Delta VIP

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIM-LU-01
Tipologia indagine	Post operam - Anno 1 - Seconda campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilita d	Traπa Β1 e viadilita connessa					
Comune	Lomazzo	Provincia	Como				
Distanza dal Tracciato	28 m	Progressiva di Progetto	km 0+2,23				
Corso d'acqua	Torrente Lura	1					

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (del
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (del

PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS84		Coordinate Gauss-Boaga			
Long: 9° 2' 35,42"	Lat: 45° 40' 44,58"	H: 242,4 m	X: 1.503.389	Y: 5.058.409	

Caratterizzazione sintetica del sito

Elementi antropico insediativi	
Attività agricola	
Attività produttiva	
Residenziale	
Cascina - fabbricato rurale	
Aree degradate	
Scuola	
Ospedale - casa di cura - casa di riposo	
Nucleo - edificio di interesse storico	
Cimitero	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
PLIS	•
Bosco	
Corso d'acqua	•
Falda	
Vincoli idrogeologici - rispetto pozzi idrici	•

Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	•
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIV-LU-01, ubicato idrologicamente a valle, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

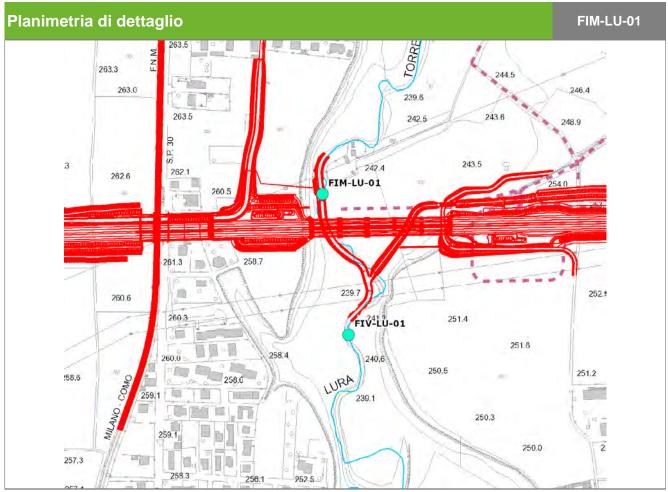

FIM-LU-01

Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01

SCALA 1:10000

SCALA 1:5000

Legenda	 Acque superficiali - Staz 	ioni puntuali 🔀 Acque su	ıperficiali - Stazioni line	eari — Fiumi
	 Tracciato di dettaglio 	Viabilità dei cantieri		

Profilo longitudinale

Foto 1 Foto attività di rilievo: misura dei parametri di campo

Foto 2 Foto attività di rilievo: misura di portata

Foto 3 Foto attività di rilievo: operazioni di campionamento

Scheda di sintesi				FIM-LU-01
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	09/03/2017	11:30:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. Le rive risultano molto scoscese e quasi del tutto nude. Solo in alcuni tratti è presente un sottile strato erboso. I fenomeni erosivi risultano frequenti con scavo delle rive. Analogamente alle ultime campagne, l'ubicazione del punto di monitoraggio è fissata circa 50 metri più a monte rispetto alle campagne di AO e CO condotte fino a settembre 2015.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Occorre lasciare il mezzo di trasporto all'altezza dell'intersezione di via per Milano con via dell'Industria. Da qui si prosegue a piede prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a destra; al secondo bivio occorre svoltare a sinistra. Si prosegue fino ad arrivare a un'area privata recintata. Per i campionamenti occorre addentrarsi nel bosco tenendosi l'area recintata sulla destra.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo Data rilievo Condizioni meteo settimana precedente 09/03/2017 Temperatura media di circa 8,5°C; precipitazioni atmosferiche piovose in data 3 e 4 marzo

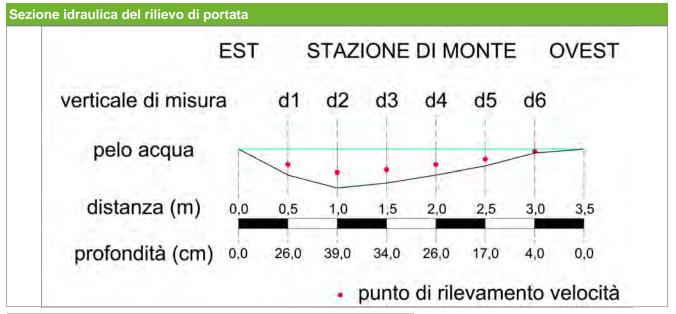
isultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,11	-
Temperatura (T)	°C	10,00	-
Ossigeno disciolto (O2)	% di saturazione	102,00	9,80
Potenziale RedOx	mV	191,20	
рН	unità pH	8,50	8,50
Conducibilità Elettrica	microS/cm	1.245,00	3,77
Torbidità	NTU	6,00	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	201,00	0,00
Solfati (SO4-)	mg/l	110,00	4,00
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,10	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,08	8,57
Tensioattivi Anionici	mg/l	0,30	6,67
Tensioattivi Non Ionici	mg/l	0,29	6,80
COD	mg/l O2	22,00	4,60
Alluminio (Al)	microg/l	137,00	2,52
Ferro (Fe)	microg/l	104,30	
Cromo (Cr)	microg/l	4,70	9,50
Escherichia Coli	UFC/100 ml	< 10,00	9,90
In situ/di laboratorio	Unità di misura	Misura	VIP
IBE (classe)	-	III	-

Not	е
-	

Risultati misure - IB	Risultati misure - IBE				
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza	
Ephemeroptera	Baetidae	Baetis	-	L	
Tricoptera	Hydropsichae	-	-	L	
Diptera	Chironomidae	-	-	U	
Diptera	Simuliidae	-	-	8	
Oligochaeta	Lumbricidae	-	-	1	
Gasteropoda	Physidae	-	-	2	
Oligochaeta	Enchytraeidae	-	-	L	
Classe di Qualità		III			

Note

Abbondanza del Taxon nel campione: I = sicuramente presente; L = abbondante; U = dominante


Risultati misure - EPI-D					
Taxa	Genere	Specie / varietà	i*	r*	a*
Classe di Qualità			Giudizio di Qualità		

Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	11:30:00
Ora fine misura	12:00:00
Data taratura strumentazione	09/03/2017
Area sezione (mq)	0,73
Larghezza sezione (m)	3,5
Profondità massima (m)	0,39
Profondità minima (m)	0
Numero verticali misurate	6
Velocità massima (m/s)	0,21
Velocità minima (m/s)	0,03

Dettagli misure						
	V1	V2	V3	V4	V5	V6
Velocità media (m/s)	0,12	0,21	0,21	0,15	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6
Direzione velocità (°)	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6
Profondità verticali (m)	0,26	0,39	0,34	0,26	0,17	0,04

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Sereno

Note

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIV-LU-01
Tipologia indagine	Post operam - Anno 1 - Seconda campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilita connessa				
Comune	Lomazzo	Provincia	Como		
Distanza dal Tracciato	157 m	Progressiva di Progetto	km 0+2,30		
Corso d'acqua	Torrente Lura				

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

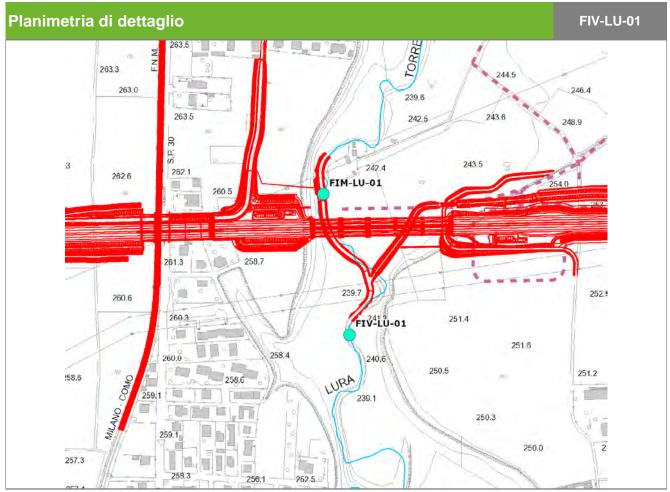
Coordinate WGS8	4		Coordinate Gauss-Boaga	1
Long: 9° 2' 37,37"	Lat: 45° 40' 37,22"	H: 239,7 m	X: 1.503.431	Y: 5.058.182

Caratterizzazione sintetica del sito

Elementi antropico insediativi	Elementi di valore naturalistico/ambientale			
Attività agricola	Area di pregio paesistico - ambientale		Cantiere	
Attività produttiva	Parco regionale		Area tecnica	
Residenziale	Riserva naturale - SIC - ZPS		Galleria naturale	
Cascina - fabbricato rurale	PLIS	•	Galleria artificiale	
Aree degradate	Bosco		Trincea	
Scuola	Corso d'acqua	•	Rilevato	
Ospedale - casa di cura - casa di riposo	Falda		Viadotto	
Nucleo - edificio di interesse	Vincoli idrogeologici - rispetto		Svincolo	
storico	pozzi idrici		Area di servizio	
Cimitero			Area di stoccaggio	

Viabilità di cantiere

Descrizione del sito / recettore


Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIM-LU-01, ubicato idrologicamente a monte, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

FIV-LU-01 Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01

SCALA 1:10000

SCALA 1:5000

Legenda	 Acque superficiali - Staz 	ioni puntuali 🔀 Acque su	ıperficiali - Stazioni line	eari — Fiumi
	 Tracciato di dettaglio 	Viabilità dei cantieri		

Profilo longitudinale

Foto 1 Foto attività di rilievo: misura di portata

Foto 2

Foto attività di rilievo: misura parametri biologici

Scheda di sintesi				FIV-LU-01
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	09/03/2017	10:30:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. La fascia perifluviale limitrofa al punto di prelievo è caratterizzata da formazioni arboree non riparie di ampiezza superiore ai 30 m. La rive risultano scoscese con la presenza di vegetazione arborea e massi. I fenomeni erosivi risultano frequenti con scavo delle rive.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Proseguire sino a raggiungere l'intersezione di via per Milano con via dell'Industria. Per raggiungere il punto occorre proseguire prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a sinistra in direzione della cascina; costeggiare a piedi il coltivo fino a imboccare un sentiero la cui entrata è in linea con la cascina alle spalle.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo Data rilievo Condizioni meteo settimana precedente 09/03/2017 Temperatura media di ca. 8,5°C; precipitazioni atmosferiche piovose in data 3 e 4 marzo

lisultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,11	-
Temperatura (T)	°C	9,60	-
Ossigeno disciolto (O2)	% di saturazione	115,00	8,50
Potenziale RedOx	mV	187,00	
рН	unità pH	8,50	8,50
Conducibilità Elettrica	microS/cm	1.264,00	3,71
Torbidità	NTU	6,50	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	203,00	0,00
Solfati (SO4-)	mg/l	110,00	4,00
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,07	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,05	9,32
Tensioattivi Anionici	mg/l	0,28	6,93
Tensioattivi Non Ionici	mg/l	0,29	6,80
COD	mg/l O2	23,00	4,40
Alluminio (Al)	microg/l	130,00	2,80
Ferro (Fe)	microg/l	105,60	
Cromo (Cr)	microg/l	4,70	9,50
Escherichia Coli	UFC/100 ml	< 10,00	9,90
In situ/di laboratorio	Unità di misura	Misura	VIP
IBE (classe)	-	III	-

Note			
-			

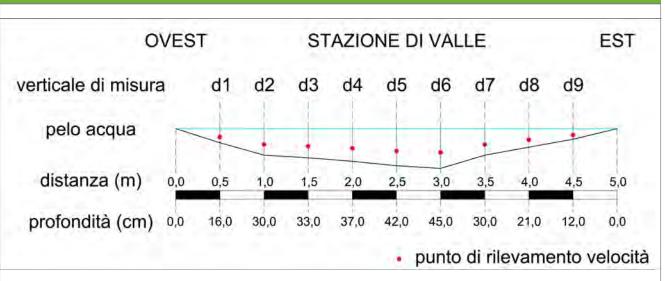
Risultati misure - IB	isultati misure - IBE					
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza		
Ephemeroptera	Baetidae	Baetis	-	L		
Ephemeroptera	Ephemerellidae	Ephemarella	-	*		
Tricoptera	Hydropsichae	-	-	L		
Diptera	Chironomidae	-	-	U		
Diptera	Simuliidae	-	-	9		
Thrichoptera	Hydroptilidae	-	-	2		
Gasteropoda	Hydrobiidae	-	-	2		
Oligochaeta	Enchytraeidae	-	-	L		
Classe di Qualità		III				

Note

Abbondanza del Taxon nel campione:

I = sicuramente presente; L = abbondante; U = dominante

Risultati misure -					
Taxa	Genere	Specie / varietà	i*	r*	a*
Classe di Qualità			Giudizio di Qualità		


Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	10:30:00
Ora fine misura	11:00:00
Data taratura strumentazione	09/03/2017
Area sezione (mq)	1,33
Larghezza sezione (m)	5
Profondità massima (m)	0,45
Profondità minima (m)	0
Numero verticali misurate	9
Velocità massima (m/s)	0,15
Velocità minima (m/s)	0,03

Dettagli misure									
	V1	V2	V3	V4	V5	V6	V7	V8	V9
Velocità media (m/s)	0,03	0,12	0,15	0,15	0,12	0,06	0,03	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9
Direzione velocità (°)	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9
Profondità verticali (m)	0,16	0,3	0,33	0,37	0,42	0,45	0,3	0,21	0,12

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Sereno

Note

FIV-LU-01 / FIM-Confronto risultati Monte - Valle LU-01 Risultati misure In situ Delta VIP Conducibilità Elettrica 0,06 Ossigeno disciolto (O2) 1,30 рΗ 0,00 di laboratorio Delta VIP Alluminio (AI) -0,28Azoto Ammoniacale (N_NH4+) -0,76 Cloruri (Cl-) 0,00 COD 0,20 0,00 Cromo (Cr) Escherichia Coli 0,00 IBE (classe) 0 Idrocarburi Totali (EPA 5030 C 2003) 0,00 Solfati (SO4-) 0,00 Solidi Sospesi Totali (SST) 0,00 Tensioattivi Anionici -0,27 Tensioattivi Non Ionici 0,00 In situ/di laboratorio Delta VIP

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIM-LU-01
Tipologia indagine	Post operam - Anno 1 - Terza campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità co	Tratta B1 e viabilità connessa				
Comune	Lomazzo	Provincia	Como			
Distanza dal Tracciato 28 m		Progressiva di Progetto	km 0+2,23			
Corso d'acqua	Torrente Lura					

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS84			Coordinate Gauss-Boaga		
Long: 9° 2' 35,42"	Lat: 45° 40' 44,58"	H: 242,4 m	X: 1.503.389	Y: 5.058.409	

Caratterizzazione sintetica del sito

Elementi antropico insediativi	
Attività agricola	
Attività produttiva	
Residenziale	
Cascina - fabbricato rurale	
Aree degradate	
Scuola	
Ospedale - casa di cura - casa di riposo	
Nucleo - edificio di interesse storico	
Cimitero	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
PLIS	•
Bosco	
Corso d'acqua	•
Falda	
Vincoli idrogeologici - rispetto pozzi idrici	•

Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	•
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIV-LU-01, ubicato idrologicamente a valle, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

FIM-LU-01

Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01

SCALA 1:10000

SCALA 1:5000

Legenda	 Acque superficiali - Stazioni puntuali 	 Acque superficiali - Stazioni li 	neari — Fiumi
	— Tracciato di dettaglio Viabilità d	dei cantieri Campi base	

Profilo longitudinale

Foto 1 Foto attività di rilievo: misura dei parametri di campo

Foto 2 Foto attività di rilievo: misura di portata

Foto 3 Foto attività di rilievo: misura e campionamento per i parametri biologici

Foto 4 Foto attività di rilievo: operazioni di campionamento

Scheda di sintesi	FIM-LU-01			
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	23/05/2017	16:00:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. Le rive risultano molto scoscese e quasi del tutto nude. Solo in alcuni tratti è presente un sottile strato erboso. I fenomeni erosivi risultano frequenti con scavo delle rive. Analogamente alle ultime campagne, l'ubicazione del punto di monitoraggio è fissata circa 50 metri più a monte rispetto alle campagne di AO e CO condotte fino a settembre 2015.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Occorre lasciare il mezzo di trasporto all'altezza dell'intersezione di via per Milano con via dell'Industria. Da qui si prosegue a piede prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a destra; al secondo bivio occorre svoltare a sinistra. Si prosegue fino ad arrivare a un'area privata recintata. Per i campionamenti occorre addentrarsi nel bosco tenendosi l'area recintata sulla destra.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo Data rilievo Condizioni meteo settimana precedente 23/05/2017 Temperatura media di ca. 19,3°C; precipitazioni atmosferiche piovose in data 18, 19 e 20 maggio

Scheda risultati			FIM-LU-01
Risultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,31	-
Temperatura (T)	°C	22,10	-
Ossigeno disciolto (O2)	% di saturazione	124,00	7,20
Potenziale RedOx	mV	171,00	
рН	unità pH	8,30	8,30
Conducibilità Elettrica	microS/cm	730,00	5,31
Torbidità	NTU	360,00	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	250,00	- 0,00
Cloruri (Cl-)	mg/l	94,30	1,78
Solfati (SO4-)	mg/l	60,00	5,43
Idrocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,12	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,10	8,12
Tensioattivi Anionici	mg/l	0,20	8,00
Tensioattivi Non Ionici	mg/l	0,50	4,00
COD	mg/l O2	23,00	4,40
Alluminio (Al)	microg/l	1.350,00	0,00
Ferro (Fe)	microg/l	1.340,00	
Cromo (Cr)	microg/l	3,90	9,68
Escherichia Coli	UFC/100 ml	< 10,00	9,90
In situ/di laboratorio	Unità di misura	Misura	VIP
EPI-D (classe)	-	IV	-
IBE (classe)	-	III-IV	-

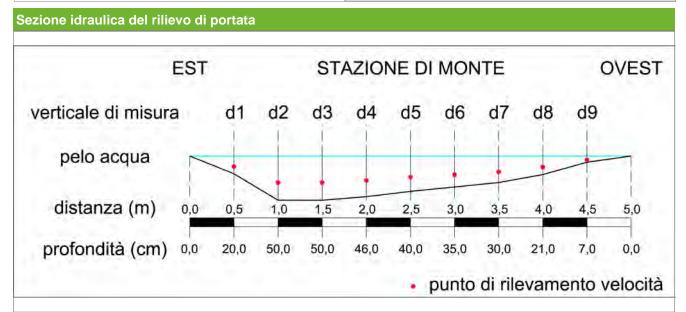
Note		
-		

Risultati misure - IBE						
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza		
Ephemeroptera	Baetidae	Baetis	-	L		
Tricoptera	Hydropsichae	-	-	6		
Diptera	Chironomidae	-	-	L		
Diptera	Simuliidae	-	-	L		
Oligochaeta	Lumbricidae	-	-	1		
Oligochaeta	Enchytraeidae	-	-	L		
Classe di Qualità		III-IV				

Note

Abbondanza del Taxon nel campione: I = sicuramente presente; L = abbondante; U = dominante

Risultati misure	- EPI-D				
Taxa	Genere	Specie / varietà	i*	r*	a*
-	Gomphonema pa	arvulum	2,2	1	3
-	Navicula cr	ryptocephala	2,3	3	4
-	Navicula cr	ryptotenella	1,2	1	4
-	Navicula gr	regaria	3	5	2
-	Navicula tri	ipunctata	0,8	1	3
-	Nitzschia pa	alea	3	1	7
-	Nitzschia A	mphibia	2,5	3	7
-	Amphora P	ediculus	1,2	1	65
-	Achnanthidium m	ninutissimum	0,5	3	50
-	Amphora in	ariensis	0,3	3	1
-	Caloneis la	ncettula	1,2	1	1
-	Cocconeis e	uglypta	1	1	28
-	Craticula su	ubminuscola	3,5	3	3
-	Encyonema m	ninutum	1	1	1
-	Fragilaria gı	racilis			4
-	Mayamaea at	tomus	3,3	3	201
-	Nitzschia so	oratensis			32
-	Planothidium from	equentissimum			16
-	Reimeria si	inuata	1,3	3	4
-	Sellaphora at	tomoides			4
-	Sellaphora ni	igrii	3	5	22



Classe di Qualità IV	V	Giudizio di Qualità	Qualità cattiva
----------------------	---	------------------------	-----------------

Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	16:00:00
Ora fine misura	16:30:00
Data taratura strumentazione	23/05/2017
Area sezione (mq)	1,565
Larghezza sezione (m)	5
Profondità massima (m)	0,5
Profondità minima (m)	0
Numero verticali misurate	9
Velocità massima (m/s)	0,24
Velocità minima (m/s)	0,12

Dettagli misure									
	V1	V2	V3	V4	V5	V6	V7	V8	V9
Velocità media (m/s)	0,15	0,15	0,21	0,24	0,21	0,24	0,21	0,18	0,12
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9
Direzione velocità (°)	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9
Profondità verticali (m)	0,2	0,5	0,5	0,46	0,4	0,35	0,3	0,21	0,07

Modalità di esecuzione misura

Operatore in alveo

Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse MONITORAGGIO AMBIENTALE COMPONENTE ACQUE SUPERFICIALI Scheda di restituzione

Condizioni atmosferiche	
Sereno	
Note	

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIV-LU-01
Tipologia indagine	Post operam - Anno 1 - Terza campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità connessa					
Comune	Lomazzo	Provincia	Como			
Distanza dal Tracciato	157 m	Progressiva di Progetto	km 0+2,30			
Corso d'acqua	Torrente Lura					

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo (delibera na
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPo (delibera na

PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS84			Coordinate Gauss-Boaga	1
Long: 9° 2' 37,37"	Lat: 45° 40' 37,22"	H: 239,7 m	X: 1.503.431	Y: 5.058.182

Caratterizzazione sintetica del sito

Elementi antropico insediativi	
Attività agricola	
Attività produttiva	
Residenziale	
Cascina - fabbricato rurale	
Aree degradate	
Scuola	
Ospedale - casa di cura - casa di riposo	
Nucleo - edificio di interesse storico	
Cimitero	

	Elementi di valore naturalistico/ambientale
	Area di pregio paesistico - ambientale
	Parco regionale
	Riserva naturale - SIC - ZPS
~	PLIS
	Bosco
~	Corso d'acqua
	Falda
	Vincoli idrogeologici - rispetto pozzi idrici
	pozzi idrici

Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	>
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIM-LU-01, ubicato idrologicamente a monte, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

SCALA 1:10000

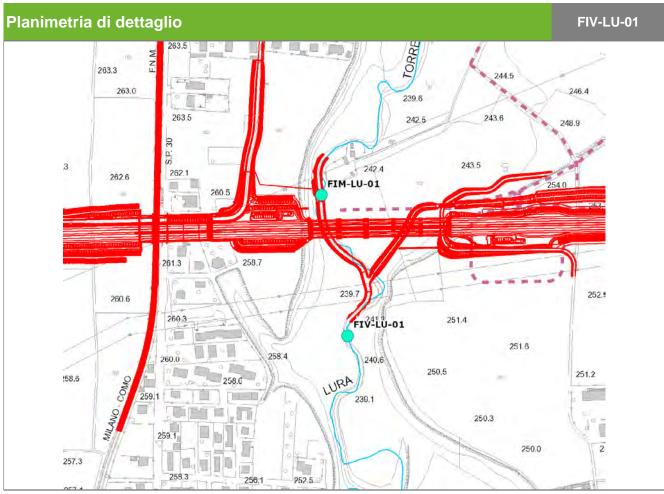
Legenda

Acque superficiali - Stazioni puntuali

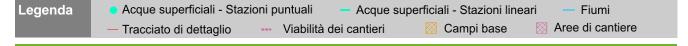
-- Viabilità di cantiere

- Tracciato di dettaglio

FIV-LU-01 Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01


Acque superficiali - Stazioni lineari

Campi base


Tipologia di opera

Aree di cantiere

SCALA 1:5000

Profilo longitudinale

Rilievi fotografici

FIV-LU-01

Foto 1 Foto attività di rilievo: misura di portata

Rilievi fotografici FIV-LU-01

Foto 2

Foto attività di rilievo: misura e campionamento per i parametri biologici

Foto 3 Foto attività di rilievo: operazioni di campionamento

Scheda di sintesi	FIV-LU-01			
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	23/05/2017	15:00:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. La fascia perifluviale limitrofa al punto di prelievo è caratterizzata da formazioni arboree non riparie di ampiezza superiore ai 30 m. La rive risultano scoscese con la presenza di vegetazione arborea e massi. I fenomeni erosivi risultano frequenti con scavo delle rive.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Proseguire sino a raggiungere l'intersezione di via per Milano con via dell'Industria. Per raggiungere il punto occorre proseguire prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a sinistra in direzione della cascina; costeggiare a piedi il coltivo fino a imboccare un sentiero la cui entrata è in linea con la cascina alle spalle.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo			
Data rilievo Condizioni meteo settimana precedente			
23/05/2017	Temperatura media di ca. 19,3°C; precipitazione atmosferiche piovose in data 18, 19 e 20 maggio		

Scheda risultati			FIV-LU-01
Risultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,31	-
Temperatura (T)	°C	22,00	-
Ossigeno disciolto (O2)	% di saturazione	105,00	9,50
Potenziale RedOx	mV	167,00	
рН	unità pH	8,40	8,40
Conducibilità Elettrica	microS/cm	720,00	5,34
Torbidità	NTU	220,00	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	180,00	0,00
Cloruri (Cl-)	mg/l	92,10	1,85
Solfati (SO4-)	mg/l	59,00	5,46
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,12	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,09	8,30
Tensioattivi Anionici	mg/l	0,26	7,20
Tensioattivi Non Ionici	mg/l	0,49	4,13
COD	mg/I O2	22,00	4,60
Alluminio (Al)	microg/l	960,00	0,00
Ferro (Fe)	microg/l	910,00	
Cromo (Cr)	microg/l	3,30	9,82
Escherichia Coli	UFC/100 ml	< 10,00	9,90
In situ/di laboratorio	Unità di misura	Misura	VIP
EPI-D (classe)	-	V	-
IBE (classe)	-	III	-

Note	
-	

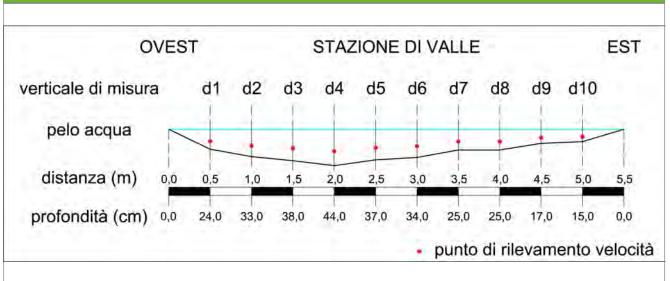
Risultati misure - IB	Risultati misure - IBE				
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza	
Ephemeroptera	Baetidae	Baetis	-	L	
Tricoptera	Hydropsichae	-	-	8	
Odonata	Libellulidae	Onycogomphus	-	1	
Diptera	Chironomidae	-	-	L	
Diptera	Tipulidae	-	-	drift	
Diptera	Simuliidae	-	-	L	
Thrichoptera	Hydroptilidae	-	-	3	
Oligochaeta	Enchytraeidae	-	-	L	
Classe di Qualità		III			

Note

Abbondanza del Taxon nel campione: I = sicuramente presente; L = abbondante; U = dominante

Risultati misure - EPI-D					
Taxa	Genere	Specie / varietà	i*	r*	a*
	Cyclotella	meneghiniana	2,8	5	2
	Gomphonema	tergestinum	1,3	3	2
	Navicula	cryptotenella	1,2	1	1
	Navicula	gregaria	3	5	9
	Navicula	tripunctata	0,8	1	1
	Nitzschia	palea	3	1	13
	Rhoicosphenia	abbreviata	1,5	3	1
	Nitzschia	Amphibia	2,5	3	3
	Amphora	Pediculus	1,2	1	50
	Achnanthidium	minutissimum	0,5	3	83
	Amphora	inariensis	0,3	3	4
	Cocconeis	euglypta	1	1	22
	Craticula	subminuscola	3,5	3	11
	Encyonema	minutum	1	1	1
	Halamphora	montana	1,2	5	1
	Mayamaea	atomus	3,3	3	2100
	Navicula	antonii	2,3	3	2
	Navicula	reichardtiana	1,7	1	3
	Navicula	veneta	3,5	3	12
	Nitzschia	soratensis			97
	Nitzschia	sp			1
	Planothidium	frequentissimum	3	0,7	22
	Planothidium	lanceolatum	0,5	3	14
	Reimeria	sinuata	1,3	3	27
	Sellaphora	atomoides			11
	Sellaphora	nigrii	3	5	8
lasse di Qualità	V		Giudizio di Qualità	Qualità pessima	

Note	
INOTE	


*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	15:00:00
Ora fine misura	15:45:00
Data taratura strumentazione	23/05/2017

Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse MONITORAGGIO AMBIENTALE COMPONENTE ACQUE SUPERFICIALI Scheda di restituzione

Area sezione (mq)	1,465
Larghezza sezione (m)	5,5
Profondità massima (m)	0,44
Profondità minima (m)	0
Numero verticali misurate	10
Velocità massima (m/s)	0,33
Velocità minima (m/s)	0,03

Sezione idraulica del rilievo di portata

Dettagli misure										
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Velocità media (m/s)	0,06	0,15	0,33	0,33	0,24	0,24	0,3	0,18	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9	Dir10
Direzione velocità (°)	90	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
Profondità verticali (m)	0,24	0,33	0,38	0,44	0,37	0,34	0,25	0,25	0,17	0,15

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Sereno

Note

FIV-LU-01 / FIM-Confronto risultati Monte - Valle LU-01 Risultati misure In situ Delta VIP Conducibilità Elettrica -0,03 Ossigeno disciolto (O2) -2,30 рΗ 0,10 di laboratorio Delta VIP Alluminio (AI) 0,00 Azoto Ammoniacale (N_NH4+) -0,18 Cloruri (Cl-) -0,07 COD -0,20 Cromo (Cr) -0,141 EPI-D (classe) Escherichia Coli 0,00 IBE (classe) -0,5 Idrocarburi Totali (EPA 5030 C 2003) 0,00 Solfati (SO4-) -0,03 Solidi Sospesi Totali (SST) 0,00 0,80 Tensioattivi Anionici Tensioattivi Non Ionici -0,13 In situ/di laboratorio Delta VIP

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIM-LU-01
Tipologia indagine	Post operam - Anno 1 - Quarta campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità connessa					
Comune	Lomazzo	Provincia	Como			
Distanza dal Tracciato	28 m	Progressiva di Progetto	km 0+2,23			
Corso d'acqua	Torrente Lura					

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	PdGPo
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	PdGPd Obiett

PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS8	4	
Long: 9° 2' 35,42"	Lat: 45° 40' 44,58"	H: 242,4 m

Coordinate Gauss-Boaga	ı
X: 1.503.389	Y: 5.058.409

Caratterizzazione sintetica del sito

Elementi antropico insediativi	
Attività agricola	
Attività produttiva	
Residenziale	
Cascina - fabbricato rurale	
Aree degradate	
Scuola	
Ospedale - casa di cura - casa di riposo	
Nucleo - edificio di interesse storico	
Cimitero	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
PLIS	•
Bosco	
Corso d'acqua	•
Falda	
Vincoli idrogeologici - rispetto pozzi idrici	•

Elementi di progetto	
Cantiere	
Area tecnica	
Galleria naturale	
Galleria artificiale	
Trincea	
Rilevato	
Viadotto	•
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIV-LU-01, ubicato idrologicamente a valle, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

FIM-LU-01

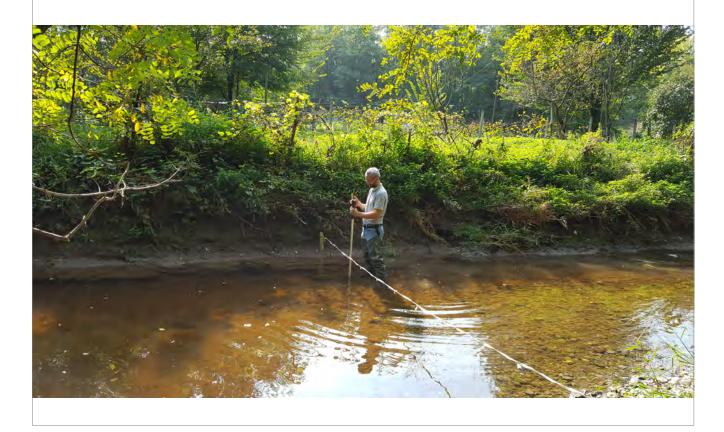
Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01

SCALA 1:10000

SCALA 1:5000

Legenda	 Acque superficiali - Stazioni puntuali 	 Acque superficiali - Stazioni li 	neari — Fiumi
	— Tracciato di dettaglio Viabilità d	dei cantieri Campi base	

Profilo longitudinale



Rilievi fotografici

FIM-LU-01

Foto 1 Foto attività di rilievo: misura dei parametri di campo

Rilievi fotografici FIM-LU-01

Foto 2 Foto attività di rilievo: misura di portata

Foto 3 Foto attività di rilievo: misura e campionamento per i parametri biologici

Rilievi fotografici FIM-LU-01

Foto 4 Foto attività di rilievo: operazioni di campionamento

Scheda di sintesi				FIM-LU-01
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	27/09/2017	11:30:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. Le rive risultano molto scoscese e quasi del tutto nude. Solo in alcuni tratti è presente un sottile strato erboso. I fenomeni erosivi risultano frequenti con scavo delle rive. Analogamente alle ultime campagne, l'ubicazione del punto di monitoraggio è fissata circa 50 metri più a monte rispetto alle campagne di AO e CO condotte fino a settembre 2015.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Occorre lasciare il mezzo di trasporto all'altezza dell'intersezione di via per Milano con via dell'Industria. Da qui si prosegue a piede prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a destra; al secondo bivio occorre svoltare a sinistra. Si prosegue fino ad arrivare a un'area privata recintata. Per i campionamenti occorre addentrarsi nel bosco tenendosi l'area recintata sulla destra.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo Data rilievo Condizioni meteo settimana precedente 27/09/2017 Temperatura media di ca. 16,4°C; precipitazione atmosferiche piovose assenti

Scheda risultati			FIM-LU-01
Risultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,01	-
Temperatura (T)	°C	16,70	-
Ossigeno disciolto (O2)	% di saturazione	197,60	0,19
Potenziale RedOx	mV	200,80	
рН	unità pH	8,11	8,11
Conducibilità Elettrica	microS/cm	1.649,00	2,55
Torbidità	NTU	5,70	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	214,00	0,00
Solfati (SO4-)	mg/l	120,00	3,71
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,21	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,16	7,68
Tensioattivi Anionici	mg/l	0,36	5,87
Tensioattivi Non Ionici	mg/l	0,29	6,80
COD	mg/l O2	44,00	2,48
Alluminio (Al)	microg/l	82,00	4,72
Ferro (Fe)	microg/l	147,00	
Cromo (Cr)	microg/l	2,60	9,98
Escherichia Coli	UFC/100 ml	< 10,00	9,90
In situ/di laboratorio	Unità di misura	Misura	VIP
EPI-D (classe)	-	IV	-
IBE (classe)	-	III	-

Note	
-	

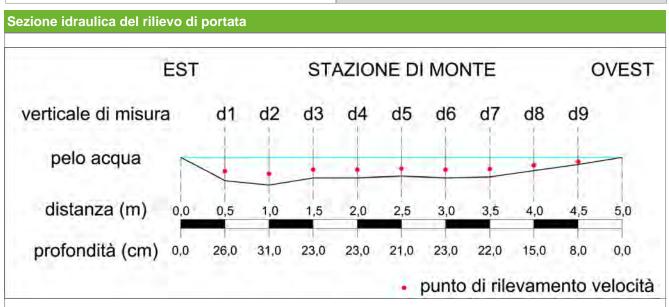
Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse MONITORAGGIO AMBIENTALE COMPONENTE ACQUE SUPERFICIALI Scheda di restituzione

Risultati misure -	IBE			
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza
Ephemeroptera	Baetidae	Baetis	-	L
Ephemeroptera	Caenidae	Caenis	-	*
Tricoptera	Hydropsichae	-	-	8
Odonata	Libellulidae	Onycogomphus	-	L
Odonata	Calopterygidae	Calopteryx	-	2
Diptera	Chironomidae	-	-	L
Diptera	Simuliidae	-	-	*
Thrichoptera	Hydroptilidae	-	-	*
Gasteropoda	Physidae	-	-	L
Gasteropoda	Hydrobiidae	-	-	2
Oligochaeta	Enchytraeidae	-	-	1
Tricoptera	Leptoceridae	-	-	6
Class	se di Qualità	III	,	'

Note

Abbondanza del Taxon nel campione: I = sicuramente presente; L = abbondante; U = dominante

Risultati misure	Risultati misure - EPI-D					
Taxa	Genere	Specie / varietà	i*	r*	a*	
-	Cocconeis	pediculus	2	1	2	
-	Cyclotella	meneghiniana	2,8	5	2	
-	Navicula	cryptocephala	2,3	3	7	
-	Navicula	cryptotenella	1,2	1	8	
-	Navicula	gregaria	3	5	17	
-	Navicula	tripunctata	0,8	1	1	
-	Nitzschia	inconspicua	2,5	3	57	
-	Nitzschia	palea	3	1	15	
-	Rhoicosphenia	abbreviata	1,5	3	1	
-	Nitzschia	Amphibia	2,5	3	2	
-	Amphora	Pediculus	1,2	1	8	
-	Achnanthidium	minutissimum	1,3	3	1	
-	Amphora	inariensis	0,3	3	3	
-	Cocconeis	euglypta	1	1	32	
-	Craticula	subminuscola	3,5	3	6	
-	Fragilaria	gracilis			2	
-	Mayamaea	atomus	3,3	3	400	
-	Planothidium	frequentissimum			17	
-	Planothidium	lanceolatum	0,5	3	4	
-	Reimeria	sinuata	1,3	3	13	
-	Sellaphora	atomoides			2	
-	Sellaphora	nigrii	3	5	19	
-	Navicula	erifuga			3	
-	Sellaphora	saprotolerans			5	
Classe di Qualità	IV		Giudizio di Qualità	Qualità cattiva		


Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	11:30:00
Ora fine misura	12:00:00
Data taratura strumentazione	27/09/2017
Area sezione (mq)	0,998
Larghezza sezione (m)	5

Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse MONITORAGGIO AMBIENTALE COMPONENTE ACQUE SUPERFICIALI Scheda di restituzione

Profondità massima (m)	0,31
Profondità minima (m)	0
Numero verticali misurate	9
Velocità massima (m/s)	0,061
Velocità minima (m/s)	0,03

Dettagli misure									
	V1	V2	V3	V4	V5	V6	V7	V8	V9
Velocità media (m/s)	0,03	0,03	0,061	0,03	0,03	0,03	0,03	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9
Direzione velocità (°)	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9
Profondità verticali (m)	0,26	0,31	0,23	0,23	0,21	0,23	0,22	0,15	0,08

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Sereno

Note

Componente Ambientale	Acque superficiali
Codice Monitoraggio	FIV-LU-01
Tipologia indagine	Post operam - Anno 1 - Quarta campagna (parametri in sito, parametri chimici, IBE) - Misura dei parametri di qualità delle acque (in sito e in laboratorio), dei parametri biologici (IBE ed EPI-D) e dei parametri idrologici e morfologici

Localizzazione del punto / areale di monitoraggio

Tratta di Appartenenza	Tratta B1 e viabilità co	Tratta B1 e viabilità connessa					
Comune	Lomazzo	Provincia	Como				
Distanza dal Tracciato	157 m	Progressiva di Progetto	km 0+2,30				
Corso d'acqua	Torrente Lura						

PdGPo (delibera n.1/2010) Stato ecologico	Scadente/Pessimo	Pd Sta
PdGPo (delibera n.1/2010) Obiettivo ecologico	Buono al 2027	Pd Ob

PdGPo (delibera n.1/2010) Stato chimico	Scadente/Pessimo
PdGPo (delibera n.1/2010) Obiettivo chimico	Buono al 2027

Coordinate WGS84		Coordinate Gauss-Boaga		
Long: 9° 2' 37,37"	Lat: 45° 40' 37,22"	H: 239,7 m	X: 1.503.431	Y: 5.058.182

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola		
Attività produttiva		
Residenziale		
Cascina - fabbricato rurale		
Aree degradate		
Scuola		
Ospedale - casa di cura - casa di riposo		
Nucleo - edificio di interesse storico		
Cimitero		

Elementi di valore naturalistico/ambientale			
Area di pregio paesistico - ambientale			
Parco regionale			
Riserva naturale - SIC - ZPS			
PLIS	~		
Bosco			
Corso d'acqua			
Falda			
Vincoli idrogeologici - rispetto pozzi idrici			

Elementi di progetto		
Cantiere		
Area tecnica		
Galleria naturale		
Galleria artificiale		
Trincea		
Rilevato		
Viadotto	•	
Svincolo		
Area di servizio		
Area di stoccaggio		
Viabilità di cantiere		

Descrizione del sito / recettore

Il torrente Lura nasce a circa 1 km a valle del confine svizzero e, dopo un percorso di circa 45 km, confluisce nel Fiume Olona in corrispondenza dell'abitato di Rho. Nel tratto oggetto di indagine il Fiume Lura solca un territorio pianeggiante e prevalentemente urbanizzato, con linea di fondo alveo poco approfondita rispetto al piano campagna. In corrispondenza del punto di monitoraggio il fiume scorre all'interno di un area boschiva nel Comune di Lomazzo, che ricade all'interno del PLIS Valle del Torrente Lura. L'attraversamento del torrente da parte del tracciato in progetto avviene su un viadotto in corrispondenza di una sezione naturale boschiva incisa sul territorio circostante, che garantisce un ampio franco rispetto alla massima piena (tempo di ritorno 200 anni) con posizione delle pile fuori alveo. Ad est e ad ovest dell'alveo il tracciato si sviluppa in trincea. Le attività di misura, unitamente a quelle condotte nel punto FIM-LU-01, ubicato idrologicamente a monte, consentono di monitorare le potenziali interferenze indotte dalla realizzazione dell'infrastruttura.

FIV-LU-01

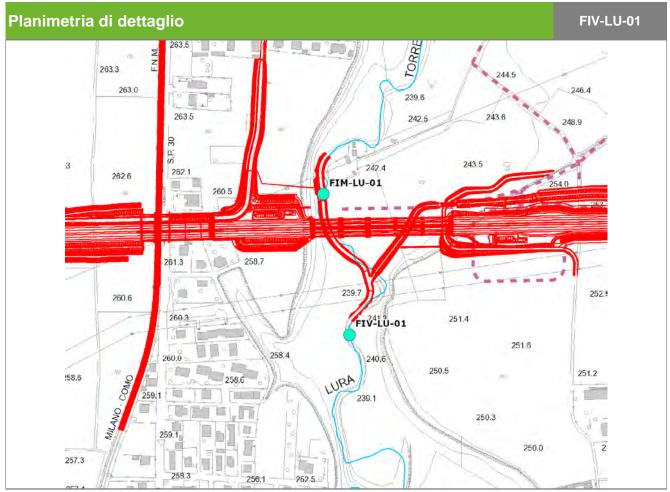
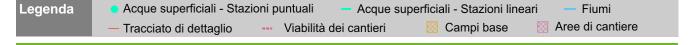


Foto aerea recettore / sito di misura VIADOTTO FIM-LU-01 FIV-LU-01


SCALA 1:10000

Legenda O Acque superficiali - Stazioni puntuali O Acque superficiali - Stazioni lineari O Tipologia di opera O Tracciato di dettaglio O Tracciato D Tracciato di dettaglio O Tracciato D Tracciato D

SCALA 1:5000

Profilo longitudinale

Rilievi fotografici

FIV-LU-01

Foto 1 Foto attività di rilievo: misura dei parametri di campo

Rilievi fotografici FIV-LU-01

Foto 2 Foto attività di rilievo: misura di portata

Foto 3 Foto attività di rilievo: misura e campionamento per i parametri biologici

Rilievi fotografici FIV-LU-01

Foto 4 Foto attività di rilievo: operazioni di campionamento

Scheda di sintesi	FIV-LU-01			
Tipologia misura	Anno	Fase	Data rilievo	Ora rilievo
Acque superficiali	2017	Post operam	27/09/2017	10:30:00

Caratterizzazione ambientale del corso d'acqua

Il punto di monitoraggio si trova all'interno del Parco del Lura. L'ambiente circostante al punto di prelievo è caratterizzato da una fitta area boschiva. La fascia perifluviale limitrofa al punto di prelievo è caratterizzata da formazioni arboree non riparie di ampiezza superiore ai 30 m. La rive risultano scoscese con la presenza di vegetazione arborea e massi. I fenomeni erosivi risultano frequenti con scavo delle rive.

Accessibilità al punto di monitoraggio

Il punto è situato nel Comune di Lomazzo. Dal Comune di Bregnano occorre prendere la via per Milano in direzione Rovellasca. Proseguire sino a raggiungere l'intersezione di via per Milano con via dell'Industria. Per raggiungere il punto occorre proseguire prendendo la strada sterrata sul lato opposto di via per Milano. Proseguire sullo sterrato fino al primo bivio, quindi svoltare a sinistra in direzione della cascina; costeggiare a piedi il coltivo fino a imboccare un sentiero la cui entrata è in linea con la cascina alle spalle.

Presenza di lavorazioni prossime al corso d'acqua

No

Descrizioni delle lavorazioni prossime al corso d'acqua

< non valorizzato >

Strumentazione adottata

- Macchina fotografica -

Mulinello idrometrico Mulinello idrometrico -

Contenitore sterile (capacità 1000 ml) per parametri batteriologici Contenitore sterile (capacità 1000 ml) per parametri batteriologici -

Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli Contenitore in vetro (capacità 2 I) per parametri chimico-fisici e metalli -

Vial per idrocarburi Vial per idrocarburi -

Contenitore in polietilene (capacità 500 ml) per le analisi di IBE Contenitore in polietilene (capacità 500 ml) per le analisi di IBE -

Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee Contenitore in vetro scuro (capacità 1 l) per le analisi di diatomee -

Sonda multiparametrica Sonda multiparametrica per pH, Temperatura, Ossigeno disciolto, Conducibilità elettrica, Potenziale RedOx, torbidità -

Inquadramento meteorologico settimana precedente al rilievo				
Data rilievo	Condizioni meteo settimana precedente			
27/09/2017	Temperatura media di ca. 16,4°C; precipitazione atmosferiche piovose assenti			

Scheda risultati			FIV-LU-01
Risultati misure			
In situ	Unità di misura	Misura	VIP
Portata (Q)	mc/s	0,03	-
Temperatura (T)	°C	16,70	-
Ossigeno disciolto (O2)	% di saturazione	146,90	4,31
Potenziale RedOx	mV	193,10	
рН	unità pH	8,40	8,40
Conducibilità Elettrica	microS/cm	1.654,00	2,54
Torbidità	NTU	4,50	
di laboratorio	Unità di misura	Misura	VIP
Solidi Sospesi Totali (SST)	mg/l	< 20,00	8,50
Cloruri (Cl-)	mg/l	209,00	0,00
Solfati (SO4-)	mg/l	130,00	3,43
drocarburi Totali (EPA 5030 C 2003)	microg/l	< 77,00	9,29
Azoto Ammoniacale (NH4)	mg/l	0,18	-
Azoto Ammoniacale (N_NH4+)	mg/l	= 0,14	7,81
Tensioattivi Anionici	mg/l	0,36	5,87
Tensioattivi Non Ionici	mg/l	0,31	6,53
COD	mg/l O2	45,00	2,40
Alluminio (Al)	microg/l	85,00	4,60
Ferro (Fe)	microg/l	147,00	
Cromo (Cr)	microg/l	3,30	9,82
Escherichia Coli	UFC/100 ml	380,00	8,69
In situ/di laboratorio	Unità di misura	Misura	VIP
EPI-D (classe)	-	IV	-
IBE (classe)	-	III	-

Note		
-		

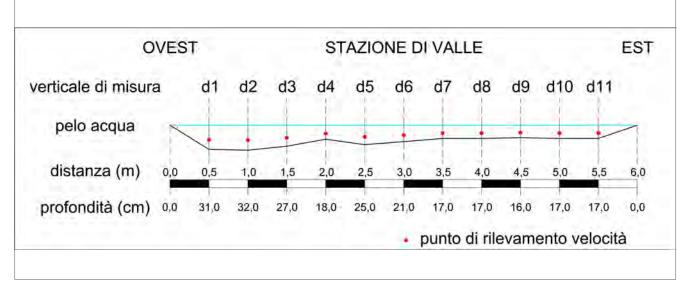
Collegamento Autostradale Dalmine - Como - Varese - Valico del Gaggiolo ed Opere ad Esso Connesse MONITORAGGIO AMBIENTALE COMPONENTE ACQUE SUPERFICIALI Scheda di restituzione

Risultati misure - IE	Risultati misure - IBE					
Taxa	Famiglia	Genere	Specie	Presenza / abbondanza		
Ephemeroptera	Baetidae	Baetis	-	L		
Tricoptera	Hydropsichae	-	-	12		
Odonata	Calopterygidae	Calopteryx	-	1		
Diptera	Chironomidae	-	-	L		
Diptera	Tipulidae	-	-	*		
Diptera	Simuliidae	-	-	L		
Arhynchobdellida	Erpobdellidae	Dina	-	1		
Gasteropoda	Physidae	-	-	L		
Oligochaeta	Enchytraeidae	-	-	1		
Odonata	Platycnemididae	Platycnemis	-	1		
Classe	di Qualità	III	•			

Note

Abbondanza del Taxon nel campione: I = sicuramente presente; L = abbondante; U = dominante

Risultati misure -	EPI-D				
Taxa	Genere	Specie / varietà	i*	r*	a*
-	Cocconeis	pediculus	2	1	8
-	Gomphonema	parvulum	2,2	1	15
-	Navicula	cryptotenella	1,2	1	4
-	Navicula	gregaria	3	5	12
-	Nitzschia	inconspicua	2,5	3	177
-	Nitzschia	palea	3	1	8
-	Rhoicosphenia	abbreviata	1,5	3	6
-	Nitzschia	Amphibia	2,5	3	6
-	Gomphonema	Pumilium			1
-	Amphora	Pediculus	1,2	1	5
-	Navicula	Phyllepta	3,3	3	1
-	Achnanthidium	minutissimum	1,3	3	3
-	Cocconeis	euglypta	1	1	32
-	Craticula	subminuscola	3,5	3	8
-	Mayamaea	atomus	3,3	3	206
-	Navicula	reichardtiana	1,7	1	1
-	Navicula	veneta	3,5	3	4
-	Planothidium	frequentissimum	0,7	3	21
-	Planothidium	lanceolatum	0,5	3	1
-	Reimeria	sinuata	1,3	3	1
-	Sellaphora	atomoides			1
-	Sellaphora	nigrii	3	5	26
-	Navicula	erifuga			1
-	Achnanthidium	exiguum	1,3	3	3
-	Ctnephora	pulchella			1
-	Geissleria	acceptata	1	1	3
-	Gomphonema	italicum			1
-	Navicula	rostellata			1
-	Nitzschia	liebetruthii			3
-	Tabularia	fasciculata	3	5	2
-	Ulnaria	contracta	2,7	3	3
-	Ulnaria	monodi			8
-	Ulnaria	ramesi			6
Classe di Qualità	IV		Giudizio di Qualità	Qualità cattiva	


Note

*i = indice di sensibilità della specie; a = abbondanza della specie; r = affidabilità della specie

Dati di portata	Misura
Ora inizio misura	10:30:00
Ora fine misura	11:00:00
Data taratura strumentazione	27/09/2017
Area sezione (mq)	1,185
Larghezza sezione (m)	6
Profondità massima (m)	0,32
Profondità minima (m)	0
Numero verticali misurate	11
Velocità massima (m/s)	0,091
Velocità minima (m/s)	0,03

Sezione idraulica del rilievo di portata

Dettagli misure											
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
Velocità media (m/s)	0,03	0,061	0,061	0,091	0,061	0,03	0,03	0,03	0,03	0,03	0,03
	Dir1	Dir2	Dir3	Dir4	Dir5	Dir6	Dir7	Dir8	Dir9	Dir10	Dir11
Direzione velocità (°)	90	90	90	90	90	90	90	90	90	90	90
	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11
Profondità verticali (m)	0,31	0,32	0,27	0,18	0,25	0,21	0,17	0,17	0,16	0,17	0,17

Modalità di esecuzione misura

Operatore in alveo

Condizioni atmosferiche

Sereno

Note

Confronto risultati Monte - Valle	FIV-LU-01 / FIM- LU-01		
Risultati misure			
In situ	Delta VIP		
Conducibilità Elettrica	0,02		
Ossigeno disciolto (O2)	-4,12		
рН	0,29		
di laboratorio	Delta VIP		
Alluminio (Al)	0,12		
Azoto Ammoniacale (N_NH4+)	-0,14		
Cloruri (Cl-)	0,00		
COD	0,08		
Cromo (Cr)	0,16		
EPI-D (classe)	0		
Escherichia Coli	1,21		
IBE (classe)	0		
Idrocarburi Totali (EPA 5030 C 2003)	0,00		
Solfati (SO4-)	0,29		
Solidi Sospesi Totali (SST)	0,00		
Tensioattivi Anionici	0,00		
Tensioattivi Non Ionici	0,27		
In situ/di laboratorio	Delta VIP		

Collegamento Autostradale Dalmine – Como – Varese – Valico del Gaggiolo ed Opere ad Esso Connesse Tratta B1 e viabilità connessa MONITORAGGIO AMBIENTALE POST OPERAM COMPONENTE AMBIENTE IDRICO SUPERFICIALE

Relazione Specialistica

ALLEGATO 2 – CERTIFICATI DI LABORATORIO

LAB Nº 1299

RAPPORTO DI PROVA Nº 4827/2016

DATA EMISSIONE: 27 Dicembre 2016

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

4856

Consegnato da:

Tecnico prelievi interno Pieco

data: 14/12/2016

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA -FIM-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

Tecnico prelievi interno Pieco

data: 14/12/2016 ora //

Punto di Prelievo:

FIM-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: 15 Dicembre 2016 ore 09:30 Fine prove: 27 Dicembre 2016 ore 15:00

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	-		APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	< 18	+	-	ISO 15705:2002
Alluminio	рд/І	91	± 18	-	UNI EN ISO 11885:2009
Alluminio disciolto*	µg/l	< 2	-		UNI EN ISO 11885:2009
Cromo totale	µg/l	5,1	± 0,92	-	UNI EN ISO 11885:2009
Cromo disciolto*	µg/l	< 2		÷	UNI EN ISO 11885:2009
Ferro	µg/l	69,1	± 6,5		UNI EN ISO 11885:2009
Ferro disciolto*	µg/l	36,3	± 3,4	4	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	83	-	-	UNI EN ISO 10304-1:2009
Cloruri (come CI)	mg/l	137	± 14	*	UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	1,21	± 0,14		APAT CNR IRSA 4030 Man 29 2003
ldrocarburi totali*	μg/l	< 77	-		EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,3	£ .		APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	< 0,25	-	-	UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	80	-		APAT CNR IRSA 7030 Man 29 2003

^{*} Prova non accreditata da ACCREDIA

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 4827/2016

DATA EMISSIONE: 27 Dicembre 2016

INFORMAZIONI AGGIUNTIVE://

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott. Ilarjio Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

Data	14/12/16
Meteo	Coperto
Corso d'acqua	T. Lura
Localizzazione Stazione	Monte opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Metodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		L
Ditteri	Chironomidae		L
Ditteri	Anthomyidae o		?
Ditteri	Muscidae		
Ditteri	Simuliidae		L
Gasteropodi	Physidae		1
Oligocheti	Lumbricidae		1
Oligocheti	Tubificidae		L

N. totale taxa	8
N. taxa ai fini del calcolo	Q
IBE	o
N. taxa drift	0
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda:

 $I = taxon \ sicuramente \ presente$ $L = taxon \ comune$

 $U = taxon\ abbondante$

* = taxon derivante da drift

LAB Nº 1299

RAPPORTO DI PROVA Nº 4828/2016

DATA EMISSIONE: 27 Dicembre 2016

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

4857

Consegnato da:

Tecnico prelievi interno Pieco

data: 14/12/2016

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA -FIV-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

Tecnico prelievi interno Pieco

data: 14/12/2016 ora //

Punto di Prelievo:

FIV-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: 15 Dicembre 2016 ore 09:30 Fine prove: 27 Dicembre 2016 ore 15:00

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	-		APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	< 18			ISO 15705:2002
Alluminio	μg/l	78	± 15	2	UNI EN ISO 11885:2009
Alluminio disciolto*	µg/l	2,4	± 0,47		UNI EN ISO 11885:2009
Cromo totale	µg/l	5,5	± 0,99	-	UNI EN ISO 11885:2009
Cromo disciolto*	µg/l	< 2	-	•	UNI EN ISO 11885:2009
Ferro	µg/l	66,2	± 6,2	-	UNI EN ISO 11885:2009
Ferro disciolto*	µg/l	38,8	± 3,6	, - -	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	84	9		UNI EN ISO 10304-1:2009
Cloruri (come CI)	mg/l	137	± 14		UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	1,15	± 0,13	45.00	APAT CNR IRSA 4030 Man 29 2003
ldrocarburi totali*	µg/l	< 77	-	*	EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,31	-	4	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	< 0,25	-		UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	120	2		APAT CNR IRSA 7030 Man 29 2003

^{*} Prova non accreditata da ACCREDIA

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 4828/2016

DATA EMISSIONE: 27 Dicembre 2016

INFORMAZIONI AGGIUNTIVE://

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott. Ilario Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Data	14/12/16
Meteo	Coperto
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIV_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Metodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		L
Tricotteri	Hydroptilidae		2
Ditteri	Chironomidae		L
Ditteri	Simuliidae		L
Ditteri	Tipulidae		*
Gasteropodi	Hydrobioidaea		1
Gasteropodi	Physidae		3
Irudinei	Erpobdellidae	Dina	3
Oligocheti	Lumbricidae		2

N. totale taxa	10
N. taxa ai fini del calcolo IBE	9
N. taxa drift	1
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda: $I = taxon \ sicuramente \ presente$

 $L = taxon\ comune$

 $U = taxon \ abbondante$ * = taxon derivante da drift

LAB Nº 1299

RAPPORTO DI PROVA Nº 1073/2017

DATA EMISSIONE: 21 Marzo 2017

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

1075

FIM-LU-01

Consegnato da:

tecnico Arethusa S.r.L.

data: 10/03/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIM-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, n. 2 vial in vetro- trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.l.

data: 09/03/2017 ora //

Punto di Prelievo: Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003*

RISULTATI ANALITICI

Inizio prove: Fine prove: 10 Marzo 2017 ore 14:00 21 Marzo 2017 ore 10:30

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	The state of the s	THE HOUSE FAIR TO	APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	22	-	-	ISO 15705:2002
Alluminio	μg/l	137	± 27		UNI EN ISO 11885:2009
Alluminio disciolto*	μg/l	115	± 22	-	UNI EN ISO 11885:2009
Cromo totale	µg/l	4,7	± 0,85		UNI EN ISO 11885:2009
Cromo disciolto*	μg/l	4,8	± 0,86		UNI EN ISO 11885:2009
Ferro	μg/l	104,3	± 9,8		UNI EN ISO 11885:2009
Ferro disciolto*	μg/l	97,5	± 9,2		UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	110	1.1.1		UNI EN ISO 10304-1:2009
Cloruri (come Cl)	mg/l	201	± 20	•	UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	0,103	± 0,012	11/2 - No. 2011	APAT CNR IRSA 4030 Man 29 2003
Idrocarburi totali*	µg/l	< 77	-	•	EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,3	Englisher.		APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	0,29	-		UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	< 10	1 de la la compa	and the state of	APAT CNR IRSA 7030 Man 29 2003

^{*} Prova non accreditata da ACCREDIA

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 1073/2017

DATA EMISSIONE: 21 Marzo 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani II Responsabile emissione RdP Dott. Ilario Italo Amboni

Albo dei chimici della Provincia di Bergamo n. 96

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

Data	9/03/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Monte opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Matada di campianamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Metodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		L
Ditteri	Chironomidae		U
Ditteri	Simuliidae		8
Gasteropodi	Physidae		2
Oligocheti	Lumbricidae		1
Oligocheti	Enchytraeidae		L

N. totale taxa	7
N. taxa ai fini del calcolo	7
IBE	,
N. taxa drift	0
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda: I = taxon sicuramente presente

 $L = taxon\ comune$

 $U = taxon \ abbondante$ * = taxon derivante da drift

LAB Nº 1299

RAPPORTO DI PROVA Nº 1074/2017

DATA EMISSIONE: 21 Marzo 2017

Spett.le ARETHUSA S.R.L.
VIA TRENTO ,N 14
24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

1076

Consegnato da:

tecnico Arethusa S.r.L.

data: 10/03/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIV-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, n. 2 vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.L.

data: 09/03/2017 ora //

Punto di Prelievo:

FIV-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003*

RISULTATI ANALITICI

Inizio prove: Fine prove: 10 Marzo 2017 ore 14:00 21 Marzo 2017 ore 10:30

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	-1	COMPANIENCE.	APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	23	-	-	ISO 15705:2002
Alluminio	μg/l	130	± 25		UNI EN ISO 11885:2009
Alluminio disciolto*	μg/l	126	± 25		UNI EN ISO 11885:2009
Cromo totale	µg/l	4,7	± 0,85		UNI EN ISO 11885:2009
Cromo disciolto*	μg/l	4,8	± 0,86		UNI EN ISO 11885;2009
Ferro	μg/l	105,6	± 9,9		UNI EN ISO 11885:2009
Ferro disciolto*	μg/l	105,3	± 9,9	-	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	110			UNI EN ISO 10304-1;2009
Cloruri (come Cl)	mg/l	203	± 20	•	UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	0,069	± 0,008		APAT CNR IRSA 4030 Man 29 2003
ldrocarburi totali*	µg/l	< 77	-	•	EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,28			APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	0,29	-	-	UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	< 10			APAT CNR IRSA 7030 Man 29 2003

^{*} Prova non accreditata da ACCREDIA

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 1074/2017

DATA EMISSIONE: 21 Marzo 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott. Ilarlo Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

Data	9/03/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIV_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Wietodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Efemerotteri	Ephemerellidae	Ephemerella	*
Tricotteri	Hydropsychidae		L
Tricotteri	Hydroptilidae		2
Ditteri	Chironomidae		U
Ditteri	Simuliidae		9
Gasteropodi	Hydrobioidaea		2
Oligocheti	Enchytraeidae		L

N. totale taxa	8
N. taxa ai fini del calcolo	7
IBE	,
N. taxa drift	1
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda:

I = taxon sicuramente presente

L = taxon somune U = taxon abbondante

* = taxon derivante da drift

LAB Nº 1299

RAPPORTO DI PROVA N° 2292/2017

DATA EMISSIONE: 6 Giugno 2017

Spett.le

ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

2284

Consegnato da:

tecnico Arethusa S.r.L.

data: 24/05/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIM-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.L.

data: 23/05/2017 ora //

Punto di Prelievo:

FIM-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: Fine prove:

24 Maggio 2017 ore 14:00 6 Giugno 2017 ore 17:00

Valori di riferimento Incertezza **Parametri** U.M. Risultato Metodiche di misura e/o consigliati Solidi sospesi totali mg/l APAT CNR IRSA 2090B Man 29 2003 250 Richiesta chimica di ossigeno (COD mg/l 23 ISO 15705:2002 come O2) Alluminio µg/l 1350 UNI EN ISO 11885:2009 ± 260 Alluminio disciolto* µg/l UNI EN ISO 11885:2009 64 ± 13 Cromo totale µq/I UNI EN ISO 11885:2009 3,9 $\pm 0,7$ Cromo disciolto* µg/l < 2 UNI EN ISO 11885:2009 Ferro µg/l UNI EN ISO 11885:2009 1340 ± 130 Ferro disciolto* UNI EN ISO 11885:2009 µg/l 21,8 ± 2 Solfati (come SO4) mg/l UNI EN ISO 10304-1:2009 60 Cloruri (come Cl) mg/l 94.3 UNI EN ISO 10304-1:2009 +94 Azoto ammoniacale (come NH4)* mg/l 0,123 ±0,014 APAT CNR IRSA 4030 Man 29 2003 Idrocarburi totali* µg/l < 77 EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007 Tensioattivi anionici mg/l APAT CNR IRSA 5170 Man 29 2003 0,2 Tensioattivi non ionici mg/l 0,5 UNI 10511-1:1996+A1:2000 Escherichia coli* ufc/100 ml APAT CNR IRSA 7030 Man 29 2003 < 10 * Prova non accreditata da ACCREDIA

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 2292/2017

DATA EMISSIONE: 6 Giugno 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott, Ifario Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

RAPPORTO DI PROVA N° 2293/2017

DATA EMISSIONE: 6 Giugno 2017

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

2285

Consegnato da:

tecnico Arethusa S.r.L.

data: 24/05/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIV-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.L.

data: 23/05/2017 ora //

Punto di Prelievo:

FIV-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: 24 Maggio 2017 ore 14:00 Fine prove: 6 Giugno 2017 ore 18:00

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	180	-	-	APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	22	-	-	ISO 15705:2002
Alluminio	μg/l	960	± 190	-	UNI EN ISO 11885:2009
Alluminio disciolto*	μg/l	73	± 14	1959	UNI EN ISO 11885:2009
Cromo totale	µg/I	3,3	± 0,59	(-	UNI EN ISO 11885:2009
Cromo disciolto*	µg/l	< 2		4	UNI EN ISO 11885:2009
Ferro	µg/I	910	± 86	1.2	UNI EN ISO 11885:2009
Ferro disciolto*	µg/l	18,2	± 1,7	<u>.</u>	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	59	-		UNI EN ISO 10304-1:2009
Cloruri (come Cl)	mg/l	92,1	± 9,1	2	UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	0,115	± 0,013	4	APAT CNR IRSA 4030 Man 29 2003
Idrocarburi totali*	μg/l	< 77	-		EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,26	2	· ·	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	0,49		2	UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	< 10	+	4	APAT CNR IRSA 7030 Man 29 2003
* Prova non accreditata da ACCREDIA	A				

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 2293/2017

DATA EMISSIONE: 6 Giugno 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott, Ilario Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

Data	23/05/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Monte opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CTN AIM 2/2004. L'indice diatomico di
•	eutrofizzazione/polluzione nel monitoraggio delle acque
	correnti
Indice Applicato	EPI-D
Operatore	Dott. Nicola Polisciano, Dott. Nicola Angeli

Codice	Genere	Specie	Var.	а	i	r
ADMI	Achnanthidium	minutissimum		50	0,5	3
AINA	Amphora	inariensis		1	0,3	3
APED	Amphora	pediculus		65	1,2	1
	Caloneis	lancettula		1	1,2	1
CEUG	Cocconeis	euglypta		28	1	1
ESBM	Craticula	subminuscola		3	3,5	3
ENMI	Encyonema	minutum		1	1	1
FGRA	Fragilaria	gracilis		4	-	-
GPAR	Gomphonema	parvulum	parvulum	3	2,2	1
NAPE	Mayamaea	atomus	permitis	201	3,3	3
NCRY	Navicula	cryptocephala		4	2,3	3
NCTE	Navicula	cryptotenella		4	1,2	1
NGRE	Navicula	gregaria		2	3	5
NTPT	Navicula	tripunctata		3	0,8	1
NAMP	Nitzschia	amphibia		7	2,5	3
NPAL	Nitzschia	palea		7	3	1
	Nitzschia	soratensis		32	-	-
PLFR	Planothidium	frequentissimum		16	-	-
RSIN	Reimeria	sinuata		4	1,3	3
	Sellaphora	atomoides		4	-	-
EOMI	Sellaphora	nigrii		22	3	5

N. specie totali	21
Valore EPI-D	8,1
Classe di qualità	IV
Giudizio di qualità	Cattiva

Legenda: a= abbondanza delle specie i = indice di sensibilità della specie r = affidabilità della specie

Data	23/05/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Monte opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Metodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		6
Ditteri	Chironomidae		L
Ditteri	Simuliidae		L
Oligocheti	Lumbricidae		1
Oligocheti	Enchytraeidae		13

N. totale taxa		5
N. taxa ai fini del calcolo IBE	(5
N. taxa drift	0	
Valore IBE	6-5	
Classe di qualità	III-IV	
Giudizio di qualità	Ambiente alterato	Ambiente molto alterato

Legenda:

 $I = taxon \ sicuramente \ presente$ $L = taxon \ comune$

 $U = taxon\ abbondante$

* = taxon derivante da drift

Data	23/05/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIV_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CTN AIM 2/2004. L'indice diatomico di
	eutrofizzazione/polluzione nel monitoraggio delle acque
	correnti
Indice Applicato	EPI-D
Operatore	Dott. Nicola Polisciano, Dott. Nicola Angeli

ADMI Achnanthidium minutissimum 83 0,5 3 AINA Amphora inariensis 4 0,3 3 APED Amphora pediculus 50 1,2 1 CEUG Cocconeis euglypta 22 1 1 ESBM Craticula subminuscola 11 3,5 3 CMEN Cyclotella menegheniana 2 2,8 5 ENMI Encyonema minutum 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
APED Amphora pediculus 50 1,2 1 CEUG Cocconeis euglypta 22 1 1 ESBM Craticula subminuscola 11 3,5 3 CMEN Cyclotella menegheniana 2 2,8 5 ENMI Encyonema minutum 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
CEUG Cocconeis euglypta 22 1 1 ESBM Craticula subminuscola 11 3,5 3 CMEN Cyclotella menegheniana 2 2,8 5 ENMI Encyonema minutum 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
ESBM Craticula subminuscola 11 3,5 3 CMEN Cyclotella menegheniana 2 2,8 5 ENMI Encyonema minutum 1 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
CMEN Cyclotella menegheniana 2 2,8 5 ENMI Encyonema minutum 1 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
ENMI Encyonema minutum 1 1 1 GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
GTER Gomphonema tergestinum 2 1,3 3 AMMO Halamphora montana 1 1,2 5	
AMMO Halamphora montana 1 1,2 5	
NAME OF THE ORIGINAL OF THE OR	
NANT Navicula antonii 2 2,3 3	
NAPE Mayamaea atomus permitis 2100 3,3 3	
NCTE Navicula cryptotenella 1 1,2 1	
NGRE Navicula gregaria 9 3 5	
NRCH Navicula reichardtiana reichardtiana 5 1,7 1	
NTPT Navicula tripunctata 1 0,8 1	
NVEN Navicula veneta 12 3,5 3	
NAMP Nitzschia amphibia 3 2,5 3	
NPAL Nitzschia palea 13 3 1	
Nitzschia soratensis 97	
Nitzschia sp 1	
PLFR Planothidium frequentissimum 22 0,7 3	
PTLA Planothidium lanceolatum 14 0,5 3	
RSIN Reimeria sinuata 27 1,3 3	
RABB Rhoicosphenia abbreviata 1 1,5 3	
Sellaphora atomoides 11	
EOMI Sellaphora nigrii 8 3 5	

N. specie totali	26
Valore EPI-D	5,3
Classe di qualità	V
Giudizio di qualità	Pessima

Legenda: a= abbondanza delle specie i = indice di sensibilità della specie

r=affidabilità della specie

Data	23/05/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIV_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
Wietodo di campionamento	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		8
Tricotteri	Hydroptilidae		3
Odonati	Gomphidae	Onychogomphus	1
Ditteri	Chironomidae		L
Ditteri	Simuliidae		L
Ditteri	Tipulidae		*
Oligocheti	Enchytraeidae		L

N. totale taxa	8
N. taxa ai fini del calcolo	7
IBE	,
N. taxa drift	1
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda:

I = taxon sicuramente presente

L = taxon somune U = taxon abbondante

* = taxon derivante da drift

LAB Nº 1299

RAPPORTO DI PROVA Nº 4990/2017

DATA EMISSIONE: 16 Ottobre 2017

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

5086

Consegnato da:

tecnico Arethusa S.r.L.

data: 28/09/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIM-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, n. 2 vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.L.

data: 27/09/2017 ora //

Punto di Prelievo:

FIM-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: 28 Settembre 2017 ore 15:30 Fine prove: 9 Ottobre 2017 ore 10:00

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	÷ .	-	APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD	mg/l	44	÷	-	ISO 15705:2002
come O2)					
Alluminio	µg/l	82	± 16	4	UNI EN ISO 11885:2009
Alluminio disciolto*	µg/l	79	± 15	4	UNI EN ISO 11885:2009
Cromo totale	µg/l	2,6	± 0,47		UNI EN ISO 11885:2009
Cromo disciolto*	μg/l	2,6	± 0,47	- 3	UNI EN ISO 11885:2009
Ferro	μg/l	147	± 14	1.0	UNI EN ISO 11885:2009
Ferro disciolto*	µg/l	147	± 14	191	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	120	*	-	UNI EN ISO 10304-1:2009
Cloruri (come CI)	mg/l	214	± 21		UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	0,212	± 0,025	1.4	APAT CNR IRSA 4030 Man 29 2003
Idrocarburi totali*	μg/l	< 77		¥	EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,36		: 4:	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	0,29	14	191	UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	< 10	-	(c -)	APAT CNR IRSA 7030 Man 29 2003
* Prova non accreditata da ACCREDIA	A				

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA Nº 4990/2017

DATA EMISSIONE: 16 Ottobre 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani Il Responsabile emissione RdP Dott. Ilario Italo Amboni Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

RAPPORTO DI PROVA N° 4991/2017

DATA EMISSIONE: 16 Ottobre 2017

Spett.le ARETHUSA S.R.L. VIA TRENTO ,N 14 24035 CURNO BG

INFORMAZIONI SUL CAMPIONE:

Numero accettazione:

5087

Consegnato da:

tecnico Arethusa S.r.L.

data: 28/09/2017

Proveniente da:

Autostrada Pedemontana Lombarda - Tratta B1

Descrizione campione:

CAMPIONE DI ACQUA - FIV-LU-01 campione istantaneo contenuto in bottiglia in vetro da 1 I,

bottiglia in plastica sterile da 1 l, n. 2 vial in vetro - trasporto refrigerato

INFORMAZIONI SUL CAMPIONAMENTO:

Campionato da:

tecnico Arethusa S.r.L.

data: 27/09/2017 ora //

Punto di Prelievo:

FIV-LU-01

Metodo di campionamento:

APAT CNR IRSA 1030 MAN29 2003

RISULTATI ANALITICI

Inizio prove: 28 Settembre 2017 ore 15:30 Fine prove: 9 Ottobre 2017 ore 10:00

Parametri	U.M.	Risultato	Incertezza di misura	Valori di riferimento e/o consigliati	Metodiche
Solidi sospesi totali	mg/l	< 20	-	-	APAT CNR IRSA 2090B Man 29 2003
Richiesta chimica di ossigeno (COD come O2)	mg/l	45	-	-	ISO 15705:2002
Alluminio	μg/l	85	± 17	-	UNI EN ISO 11885:2009
Alluminio disciolto*	μg/l	72	± 14	, <u>=</u> ,	UNI EN ISO 11885:2009
Cromo totale	µg/l	3,3	± 0,59	-	UNI EN ISO 11885:2009
Cromo disciolto*	µg/I	2,5	± 0,45	(-)	UNI EN ISO 11885:2009
Ferro	µg/l	147	± 14		UNI EN ISO 11885:2009
Ferro disciolto*	µg/l	124	± 12	4	UNI EN ISO 11885:2009
Solfati (come SO4)	mg/l	130	2	-	UNI EN ISO 10304-1:2009
Cloruri (come Cl)	mg/l	209	± 21	(-	UNI EN ISO 10304-1:2009
Azoto ammoniacale (come NH4)*	mg/l	0,177	± 0,021	-	APAT CNR IRSA 4030 Man 29 2003
Idrocarburi totali*	µg/l	< 77	-	Æ.	EPA 5021A 2003+EPA8015C 2007+EPA 3510C 1996+EPA 3620C 2007
Tensioattivi anionici	mg/l	0,36	-	-	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	mg/l	0,31	-	-	UNI 10511-1:1996+A1:2000
Escherichia coli*	ufc/100 ml	380	-	-	APAT CNR IRSA 7030 Man 29 2003
* Prova non accreditata da ACCREDIA	A				

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso. L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

LAB Nº 1299

SEGUE RAPPORTO DI PROVA N° 4991/2017

DATA EMISSIONE: 16 Ottobre 2017

INFORMAZIONI AGGIUNTIVE:

I valori di concentrazione sono stati calcolati utilizzando i dati relativi al prelievo così come forniti dal cliente. P.I.ECO S.r.l. è responsabile solo dei risultati delle prove effettuate sui campioni pervenuti in laboratorio.

PARERI ED INTERPRETAZIONI (non oggetto di accreditamento)://

La Direzione Tecnica Alessandro Medolago Albani II Responsabile emissione RdP

Dott. Ilario Italo Amboni

Albo dei chimici della Provincia di Bergamo n. 96

Il presente rapporto di prova riguarda solo il campione oggetto di prova.

E' vietata la riproduzione parziale del presente documento, salvo approvazione scritta del laboratorio di prova che l'ha emesso.

L'incertezza di misura è espressa con un livello di fiducia del 95% con fattore di copertura K=2.

Data	29/09/17	
Meteo	Sereno	
Corso d'acqua	T. Lura	
Localizzazione Stazione	Monte opera	
Codice Stazione	FIM_LU_01	
Comune	Lomazzo	
Provincia	Provincia Como	
Regione	ne Lombardia	
Metodo di campionamento	APAT CTN AIM 2/2004. L'indice diatomico di	
	eutrofizzazione/polluzione nel monitoraggio delle acque	
	correnti	
Indice Applicato	EPI-D	
Operatore	Dott. Nicola Polisciano, Dott. Nicola Angeli	

Codice	Genere	Specie	Var.	а	i	r
ADMI	Achnanthidium	minutissimum		1	0,5	3
AINA	Amphora	inariensis		3	0,3	3
APED	Amphora	pediculus		8	1,2	1
CEUG	Cocconeis	euglypta		32	1	1
CPED	Cocconeis	pediculus		2	2	1
ESBM	Craticula	subminuscola		6	3,5	3
CMEN	Cyclotella	menegheniana		2	2,8	5
FGRA	Fragilaria	gracilis		2	-	-
NAPE	Мауатаеа	atomus	permitis	400	3,3	3
NCRY	Navicula	cryptocephala		7	2,3	3
NCTE	Navicula	cryptotenella		8	1,2	1
NERI	Navicula	erifuga		3	-	-
NGRE	Navicula	gregaria		17	3	5
NTPT	Navicula	tripunctata		1	0,8	1
NAMP	Nitzschia	amphibia		2	2,5	3
NINC	Nitzschia	inconspicua		57	2,5	3
NPAL	Nitzschia	palea		15	3	1
PLFR	Planothidium	frequentissimum		17	-	
PTLA	Planothidium	lanceolatum		4	0,5	3
RSIN	Reimeria	sinuata		13	1,3	3
RABB	Rhoicosphenia	abbreviata		1	1,5	3
	Sellaphora	atomoides		2	-	-
EOMI	Sellaphora	nigrii		19	3	5
	Sellaphora	saprotolerans		5	-	-

N. specie totali	24
Valore EPI-D	6,0
Classe di qualità	IV
Giudizio di qualità	Cattiva

Legenda: a= abbondanza delle specie i = indice di sensibilità della specie r = affidabilità della specie

Data	29/09/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Monte opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione Lombardia	
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. <i>Volume terzo 9010</i> . Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Efemerotteri	Caenidae	Caenis	*
Tricotteri	Hydropsychidae		8
Tricotteri	Hydroptilidae		*
Tricotteri	Leptoceridae		6
Odonati	Calopterygidae	Calopteryx	2
Odonati	Gomphidae	Onychogomphus	L
Ditteri	Chironomidae		L
Ditteri	Simuliidae		*
Gasteropodi	Hydrobioidea		2
Gasteropodi	Physidae		L
Oligocheti	Enchytraeidae		1

N. totale taxa	12
N. taxa ai fini del calcolo	9
IBE	9
N. taxa drift	3
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda:

 $I = taxon \ sicuramente \ presente$

L = taxon sicuramente present L = taxon comune U = taxon abbondante * = taxon derivante da drift

Data	29/09/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIM_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CTN AIM 2/2004. L'indice diatomico di
•	eutrofizzazione/polluzione nel monitoraggio delle acque
	correnti
Indice Applicato	EPI-D
Operatore	Dott. Nicola Polisciano, Dott. Nicola Angeli
Operatore	2 cm 1 (10 cm 1 cm

Codice	Genere	Specie	Var.	а	i	r
ADEG	Achnanthidium	exiguum		3	1,3	3
ADMI	Achnanthidium	minutissimum		3	0,5	3
APED	Amphora	pediculus		5	1,2	1
CEUG	Cocconeis	euglypta		32	1	1
CPED	Cocconeis	pediculus		8	2	1
ESBM	Craticula	subminuscola		8	3,5	3
CTPU	Ctnephora	pulchella		1	-	
GACC	Geissleria	acceptata		3	1	1
	Gomphonema	italicum		1	-	-
GPAR	Gomphonema	parvulum	parvulum	15	2,2	1
GPRI	Gomphonema	pumilum	rigidum	1	-	-
NAPE	Mayamaea	atomus	permitis	206	3,3	3
NPHY	Navicula	phyllepta		1	3,3	3
NCTE	Navicula	cryptotenella		4	1,2	1
NERI	Navicula	erifuga		1	-	
NGRE	Navicula	gregaria		12	3	5
NRCH	Navicula	reichardtiana	reichardtiana	1	1,7	1
NROS	Navicula	rostellata		1	-	-
NVEN	Navicula	veneta		4	3,5	3
NAMP	Nitzschia	amphibia		6	2,5	3
NINC	Nitzschia	inconspicua		177	2,5	3
NLBT	Nitzschia	liebetruthii	liebetruthii	3	-	-
NPAL	Nitzschia	palea		8	3	1
PLFR	Planothidium	frequentissimum		21	0,7	3
PTLA	Planothidium	lanceolatum		1	0,5	3
RSIN	Reimeria	sinuata		1	1,3	3
RABB	Rhoicosphenia	abbreviata		6	1,5	3
	Sellaphora	atomoides		1	-	-
EOMI	Sellaphora	nigrii		26	3	5
TFAS	Tabularia	fasciculata		2	3	5
	Ulnaria	contracta		3	2,7	3
	Ulnaria	monodi		8	-	-
	Ulnaria	ramesi		6	-	-

Legenda: a= abbondanza delle specie i = indice di sensibilità della specie r = affidabilità della specie

N. specie totali	33
Valore EPI-D	7
Classe di qualità	IV
Giudizio di qualità	Cattiva

Data	29/09/17
Meteo	Sereno
Corso d'acqua	T. Lura
Localizzazione Stazione	Valle opera
Codice Stazione	FIV_LU_01
Comune	Lomazzo
Provincia	Como
Regione	Lombardia
Metodo di campionamento	APAT CNR-IRSA Metodi Biologici per le Acque. Volume
	terzo 9010. Manuali e linee guida 29/2003
Indice Applicato	I.B.E. Indice Biotico Esteso
Operatore	Dott. Nicola Polisciano

Macrogruppo	Famiglia	Genere	Abbondanza
Efemerotteri	Baetidae	Baetis	L
Tricotteri	Hydropsychidae		12
Odonati	Calopterygidae	Calopteryx	1
Odonati	Platycnemididae	Platycnemis	1
Ditteri	Chironomidae		L
Ditteri	Simuliidae		L
Ditteri	Tipulidae		*
Gasteropodi	Physidae		L
Irudinei	Dina		1
Oligocheti	Enchytraeidae		1

N. totale taxa	10
N. taxa ai fini del calcolo IBE	9
N. taxa drift	1
Valore IBE	6
Classe di qualità	III
Giudizio di qualità	Ambiente alterato

Legenda: $I = taxon \ sicuramente \ presente$

 $L = taxon\ comune$

 $U = taxon \ abbondante$ * = taxon derivante da drift

